Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators

Abstract

Interactions between light and hypersonic waves can be enhanced by tight field confinement, as shown in periodically structured materials1, microcavities2, micromechanical resonators3 and photonic crystal fibres4,5,6 (PCFs). There are many examples of weak sound–light interactions, for example, guided acoustic-wave Brillouin scattering in conventional optical fibres7. This forward-scattering effect results from the interaction of core-guided light with acoustic resonances of the entire fibre cross-section, and is viewed as a noise source in quantum-optics experiments8. Here, we report the observation of strongly nonlinear forward scattering of laser light by gigahertz acoustic vibrations, tightly trapped together in the small core of a silica–air PCF. Bouncing to and fro across the core at close to 90 to the fibre axis, the acoustic waves form optical-phonon-like modes with a flat dispersion curve and a distinct cutoff frequency Ωa. This ensures automatic phase-matching to the guided optical mode so that, on pumping with a dual-frequency laser source tuned to Ωa, multiple optical side bands are generated, spaced by Ωa. The number of strong side bands in this Raman-like process increases with pump power. The results point to a new class of designable nonlinear optical device with applications in, for example, pulse synthesis, frequency comb generation for telecommunications and fibre laser mode-locking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dispersion diagrams for guided optical and acoustic modes.
Figure 2: Spectrum of acoustic resonances in the PCF used in the experiment.
Figure 3: Schematic diagram of the experimental set-up.
Figure 4: Characteristics of Stokes process resulting from stimulated forward scattering.
Figure 5: Optical spectra of the transmitted light showing generation of multiple Stokes and anti-Stokes components.

Similar content being viewed by others

References

  1. Gorishnyy, T., Jang, J. H., Koh, C. & Thomas, E. L. Direct observation of a hypersonic band gap in two-dimensional single crystalline phononic structures. Appl. Phys. Lett. 91, 121915 (2007).

    Article  ADS  Google Scholar 

  2. Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B. & Thierry-Mieg, V. Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys. Rev. Lett. 89, 227402 (2002).

    Article  ADS  Google Scholar 

  3. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  ADS  Google Scholar 

  4. Dainese, P. et al. Raman-like light scattering from acoustic phonons in photonic crystal fiber. Opt. Express 14, 4141–4150 (2006).

    Article  ADS  Google Scholar 

  5. Beugnot, J.-C., Sylvestre, T., Maillotte, H., Mélin, G. & Laude, V. Guided acoustic wave Brillouin scattering in photonic crystal fibers. Opt. Lett. 32, 17–19 (2007).

    Article  ADS  Google Scholar 

  6. Wiederhecker, G. S., Brenn, A., Fragnito, H. L. & Russell, P. St.J. Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers. Phys. Rev. Lett. 100, 203903 (2008).

    Article  ADS  Google Scholar 

  7. Shelby, R. M., Levenson, M. D. & Bayer, P. W. Guided acoustic-wave Brillouin scattering. Phys. Rev. B 31, 5244–5252 (1985).

    Article  ADS  Google Scholar 

  8. Elser, D. et al. Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers. Phys. Rev. Lett. 97, 133901 (2006).

    Article  ADS  Google Scholar 

  9. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    Article  ADS  Google Scholar 

  10. Fukuba, S., Tsuboi, K., Abe, S. & Kajikawa, K. Nonlinear optical detection of proteins based on localized surface plasmons in surface immobilized gold nanospheres. Langmuir 24, 8367–8372 (2008).

    Article  Google Scholar 

  11. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  12. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    Article  ADS  Google Scholar 

  13. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  14. Sensarn, S., Goda, S. N., Yin, G. Y. & Harris, S. E. Molecular modulation in a hollow fiber. Opt. Lett. 31, 2836–2838 (2006).

    Article  ADS  Google Scholar 

  15. Niklès, M., Thévenaz, L. & Robert, P. A. Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightwave Tech. 15, 1842–1851 (1997).

    Article  ADS  Google Scholar 

  16. Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Phys. 2, 388–392 (2006).

    Article  ADS  Google Scholar 

  17. McElhenny, J. E., Pattnaik, R. K., Toulouse, J., Saitoh, K. & Koshiba, M. Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers. J. Opt. Soc. Am. B 25, 582–593 (2008).

    Article  ADS  Google Scholar 

  18. Kulcsar, G., Jaouën, Y., Canat, G., Olmedo, E. & Debarge, G. Multiple-stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+–Yb3+ codoped fiber amplifier. IEEE Photon. Tech. Lett. 15, 801–803 (2003).

    ADS  Google Scholar 

  19. Ogusu, K. Interplay between cascaded stimulated Brillouin scattering and four-wave mixing in a fiber Fabry–Perot resonator. J. Opt. Soc. Am. B 20, 685–694 (2003).

    Article  ADS  Google Scholar 

  20. Biryukov, A. S., Sukharev, M. E. & Dianov, E. M. Excitation of sound waves upon propagation of laser pulses in optical fibres. Quantum Electron. 32, 765–775 (2002).

    Article  ADS  Google Scholar 

  21. Dianov, E. M., Luchnikov, A. V., Pilipetskii, A. N. & Starodumov, A. N. Electrostriction mechanism of soliton interaction in optical fibers. Opt. Lett. 15, 314–316 (1990).

    Article  ADS  Google Scholar 

  22. Thurston, R. N. Elastic waves in rods and clad rods. J. Acoust. Soc. Am. 64, 1–37 (1978).

    Article  ADS  Google Scholar 

  23. Okoshi, T. Optical Fibers (Academic, 1982).

    Google Scholar 

  24. Peral, E. & Yariv, A. Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering. IEEE J. Quantum Electron. 35, 1185–1195 (1999).

    Article  ADS  Google Scholar 

  25. Boyd, R. W. Nonlinear Optics (Academic, 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. St. J. Russell.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 526 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, M., Nazarkin, A., Brenn, A. et al. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Phys 5, 276–280 (2009). https://doi.org/10.1038/nphys1217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing