Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors

Abstract

Photon beams exhibit temporal correlations that are characteristics of their emission mechanism. For instance, photons issued from incoherent sources tend to be detected in bunches. This striking ‘bunching’ behaviour has been observed in the seminal experiment by Hanbury-Brown and Twiss (HBT) in the fifties, who measured the time of arrival of partially coherent photons on two separate photon-counting modules1. Since then, HBT interferometry has become a widespread technique to study photon correlations down to only the nanosecond range, because of the detector-limited bandwidth, preventing the observation of bunching for real thermal sources. It has been suggested later that two-photon absorption (TPA) could measure the photon temporal correlations at a much shorter timescale2,3, as it involves an almost simultaneous absorption of two photons, within a maximum delay given by the Heisenberg principle. Here, for the first time, this prediction is experimentally demonstrated using TPA in a GaAs photon-counting module. We have observed photon bunching in the femtosecond range for real blackbody sources (an enhancement of six orders of magnitude in the time resolution of present techniques), opening the way to monitor optical quantum statistics at the ultrashort timescale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of TPA and experimental set-up.
Figure 2: Characterization of TPA detection response.
Figure 3: Variation of the TPA photocounts as a function of the delay τ in the Michelson set-up.
Figure 4

Similar content being viewed by others

References

  1. Hanbury-Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    Article  ADS  Google Scholar 

  2. Mollow, B. R. Two photon absorption and field correlation functions. Phys. Rev. 175, 1555–1563 (1968).

    Article  ADS  Google Scholar 

  3. Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).

    MATH  Google Scholar 

  4. Bertolotti, M. Masers and Lasers: An Historical Approach (Adam Hilger, 1983).

    Google Scholar 

  5. Fano, U. Quantum theory of interference effects in the mixing of light from phase independent sources. Am. J. Phys. 29, 539–545 (1961).

    Article  ADS  Google Scholar 

  6. Scarl, D. B. Measurements of photon correlations in partially coherent light. Phys. Rev. 175, 1661–1668 (1968).

    Article  ADS  Google Scholar 

  7. Glauber, R.J. Quantum Optics and Electronics 63–185 (Gordon and Breach, 1964).

    Google Scholar 

  8. Mandel, L. & Wolf, E. Selected Papers on Coherence and Fluctuations of Light (Dover, 1971).

    Google Scholar 

  9. Glauber, R. Photon correlations. Phys. Rev. Lett. 10, 84–86 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  10. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 89, 691–695 (1977).

    Article  ADS  Google Scholar 

  11. Scarcelli, G., Berardi, V. & Shih, Y. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations. Phys.Rev. Lett. 96, 063602 (2006).

    Article  ADS  Google Scholar 

  12. Gatti, A., Bondani, M., Lugiato, L. A., Paris, M. G. A. & Fabre, C. Phys. Rev. Lett. 98, 039301 (2007).

    Article  ADS  Google Scholar 

  13. Cai, Y. & Zhu, S.-Y. Ghost interference with partially coherent radiation. Opt. Lett. 29, 2716–2718 (2004).

    Article  ADS  Google Scholar 

  14. Cheng, J. & Han, S. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett. 92, 093903 (2004).

    Article  ADS  Google Scholar 

  15. Bennink, R. S., Bentley, S. J. & Boyd, R. W. ‘Two-photon’ coincidence imaging with classical sources. Phys. Rev. Lett. 89, 113601 (2002).

    Article  ADS  Google Scholar 

  16. Valencia, A., Scarcelli, G., D’Angelo, M. & Shih, Y. Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005).

    Article  ADS  Google Scholar 

  17. Twiss, R. Q., Little, A. G. & Hanbury-Brown, R. Correlation between photons in coherent light beams of light detected by a coincidence counting technique. Nature 180, 324–326 (1957).

    Article  ADS  Google Scholar 

  18. Beck, M. Comparing measurements of g(2)(0) performed with different coincidence detection techniques. J. Opt. Soc. Am. B 24, 2972–2978 (2007).

    Article  ADS  Google Scholar 

  19. Arecchi, F. T., Gatti, E. & Sona, A. Time distribution of photons from coherent and gaussian sources. Phys. Lett. 20, 27–29 (1966).

    Article  ADS  Google Scholar 

  20. Friberg, S., Hong, C. K. & Mandel, L. Measurement of time delays in the parametric production of photon pairs. Phys. Rev. Lett. 54, 2011–2013 (1985).

    Article  ADS  Google Scholar 

  21. Abram, I., Raj, R. K., Oudar, J. L. & Dolique, G. Direct observation of the second-order coherence of parametrically generated light. Phys. Rev. Lett. 57, 2516–2519 (1986).

    Article  ADS  Google Scholar 

  22. Qu, Y. & Singh, S. Photon correlation effects in second harmonic generation. Opt. Commun. 90, 111–114 (1992).

    Article  ADS  Google Scholar 

  23. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  24. Georgiades, N. P., Polzik, E. S., Adamatsu, K., Kimble, H. J. & Parkins, A. S. Nonclassical excitation for atoms in a squeezed vacuum. Phys. Rev. Lett. 75, 3426–3429 (1995).

    Article  ADS  Google Scholar 

  25. Takagi, Y., Kobayashi, T., Yoshihara, K. & Imamura, S. Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors. Opt. Lett. 17, 658–660 (1992).

    Article  ADS  Google Scholar 

  26. Roth, J. M., Murphy, T. E. & Xu, C. Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube. Opt. Lett. 27, 2076–2078 (2002).

    Article  ADS  Google Scholar 

  27. Aversa, C., Sipe, J. E., Sheik-Bahae, M. & Van Stryland, E. W. Third-order optical nonlinearities in semiconductors: The two-band model. Phys. Rev. B 50, 18073–18082 (1994).

    Article  ADS  Google Scholar 

  28. Sheik-Bahae, M., Said, A. A., Wei, T.-H., Hagan, D. J. & Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).

    Article  ADS  Google Scholar 

  29. Mogi, K., Naganuma, K. & Yamada, H. A novel real-time measurement method for ultrashort optical pulses. Jpn. J. Appl. Phys. 27, 2078–2081 (1988).

    Article  ADS  Google Scholar 

  30. Schneider, H. et al. Room temperature midinfrared two-photon photodetector. Appl. Phys. Lett. 93, 101114 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to J. Bonnet, R. Haidar, G. Canat and A. Bresson for help in the experiments. They thank J. Khurgin and P. Grangier for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed at each step of this work.

Corresponding author

Correspondence to E. Rosencher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boitier, F., Godard, A., Rosencher, E. et al. Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nature Phys 5, 267–270 (2009). https://doi.org/10.1038/nphys1218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing