Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impulsive orientation and alignment of quantum-state-selected NO molecules

This article has been updated

Abstract

Manipulation of the molecular-axis distribution is an important ingredient in experiments aimed at understanding and controlling molecular processes1,2,3,4,5,6. Samples of aligned or oriented molecules can be obtained following the interaction with an intense laser field7,8,9, enabling experiments in the molecular rather than the laboratory frame10,11,12. However, the degree of impulsive molecular orientation and alignment that can be achieved using a single laser field is limited13 and crucially depends on the initial states, which are thermally populated. Here we report the successful demonstration of a new technique for laser-field-free orientation and alignment of molecules that combines an electrostatic field, non-resonant femtosecond laser excitation14 and the preparation of state-selected molecules using a hexapole2. As a unique quantum-mechanical wavepacket is formed, a large degree of orientation and alignment is observed both during and after the femtosecond laser pulse, which is even further increased (to 〈cosθ〉=−0.74 and 〈cos2θ〉=0.82, respectively) by tailoring the shape of the femtosecond laser pulse. This work should enable new applications such as the study of reaction dynamics or collision experiments in the molecular frame, and orbital tomography11 of heteronuclear molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the experimental set-up.
Figure 2: Impulsive alignment of state-selected NO molecules.
Figure 3: Impulsive orientation of state-selected NO molecules.
Figure 4: Optimization of impulsive orientation.

Similar content being viewed by others

Change history

  • 25 March 2009

    NOTE: In the version of this Letter originally published online, the author list of ref. 29 was incorrect. It has now been corrected in all versions of this Letter.

References

  1. Kuipers, E. W., Tenner, M. G., Kleyn, A. W. & Stolte, S. Observation of steric effects in gas–surface scattering. Nature 334, 420–422 (1988).

    Article  ADS  Google Scholar 

  2. Parker, D. H. & Bernstein, R. B. Oriented molecule beams via the electrostatic hexapole: Preparation, characterization, and reactive scattering. Ann. Rev. Phys. Chem. 40, 561–595 (1989).

    Article  ADS  Google Scholar 

  3. Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490–492 (1997).

    Article  ADS  Google Scholar 

  4. Rakitzis, T. P., Van den Brom, A. J. & Janssen, M. H. M. Directional dynamics in the photodissociation of oriented molecules. Science 303, 1852–1854 (2004).

    Article  ADS  Google Scholar 

  5. Brooks, P. R. Reactions of oriented molecules. Science 193, 11–16 (1976).

    Article  ADS  Google Scholar 

  6. Loesch, H. J. & Remscheid, A. Brute force in molecular reaction dynamics: A novel technique for measuring steric effects. J. Chem. Phys. 93, 4779–4790 (1990).

    Article  ADS  Google Scholar 

  7. Rosca-Pruna, F. & Vrakking, M. J. J. Experimental observation of revival structures in picosecond laser-induced alignment of I2 . Phys. Rev. Lett. 87, 153902 (2001).

    Article  ADS  Google Scholar 

  8. Stapelfeldt, H. & Seideman, T. Colloquium: Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

    Article  ADS  Google Scholar 

  9. Goban, A., Minemoto, S. & Sakai, H. Laser field-free molecular orientation. Phys. Rev. Lett. 101, 013001 (2008).

    Article  ADS  Google Scholar 

  10. Litvinyuk, I. V. et al. Alignment-dependent strong field ionization of molecules. Phys. Rev. Lett. 90, 233003 (2003).

    Article  ADS  Google Scholar 

  11. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  12. Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470–474 (2005).

    Article  ADS  Google Scholar 

  13. Leibscher, M., Averbukh, I. Sh. & Rabitz, H. Molecular alignment by trains of short laser pulses. Phys. Rev. Lett. 90, 213001 (2003).

    Article  ADS  Google Scholar 

  14. Cai, L., Marango, J. & Friedrich, B. Time-dependent alignment and orientation of molecules in combined electrostatic and pulsed nonresonant laser fields. Phys. Rev. Lett. 86, 775–778 (2001).

    Article  ADS  Google Scholar 

  15. Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    Article  ADS  Google Scholar 

  16. Judson, R. S. & Rabitz, H. Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500–1503 (1992).

    Article  ADS  Google Scholar 

  17. Assion, et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998).

    Article  ADS  Google Scholar 

  18. Sakai, H. et al. Controlling the alignment of neutral molecules by a strong laser field. J. Chem. Phys. 110, 10235–10238 (1999).

    Article  ADS  Google Scholar 

  19. Bisgaard, C. Z., Poulsen, M. D., Peronne, E., Viftrup, S. S. & Stapelfeldt, H. Observation of enhanced field-free molecular alignment by two laser pulses. Phys. Rev. Lett. 92, 173004 (2004).

    Article  ADS  Google Scholar 

  20. Rouzée, A., Hertz, E., Lavorel, B. & Faucher, O. Towards the adaptive optimization of field-free molecular alignment. J. Phys. B 41, 074002 (2008).

    Article  ADS  Google Scholar 

  21. Suzuki, T., Sugawara, Y., Minemoto, S. & Sakai, H. Optimal control of nonadiabatic alignment of rotationally cold N2 molecules with the feedback of degree of alignment. Phys. Rev. Lett. 100, 033603 (2008).

    Article  ADS  Google Scholar 

  22. Neutze, R., Wouts, R., Van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  ADS  Google Scholar 

  23. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006).

    Article  ADS  Google Scholar 

  24. Vrakking, M. J. J. & Stolte, S. Coherent control of molecular orientation. Chem. Phys. Lett. 271, 209–215 (1997).

    Article  ADS  Google Scholar 

  25. Machholm, M. & Henriksen, N. E. Field-free orientation of molecules. Phys. Rev. Lett. 87, 193001 (2001).

    Article  ADS  Google Scholar 

  26. Friedrich, B. & Herschbach, D. Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces. J. Chem. Phys. 111, 6157–6160 (1999).

    Article  ADS  Google Scholar 

  27. Sakai, H., Minemoto, S., Nanjo, H., Tanji, H. & Suzuki, T. Controlling the orientation of polar molecules with combined electrostatic and pulsed, nonresonant laser fields. Phys. Rev. Lett. 90, 083001 (2003).

    Article  ADS  Google Scholar 

  28. Baumfalk, R., Nahler, N. H. & Buck, U. Photodissociation of oriented HXeI molecules in the gas phase. J. Chem. Phys. 114, 4755–4758 (2001).

    Article  ADS  Google Scholar 

  29. Holmegaard, L. et al. Laser-induced alignment and orientation of quantum-state-selected large molecules. Phys. Rev. Lett. 102, 023001 (2009).

    Article  ADS  Google Scholar 

  30. Gijsbertsen, et al. Direct determination of the sign of the NO dipole moment. Phys. Rev. Lett. 99, 213003 (2007).

    Article  ADS  Google Scholar 

  31. Meijer, A. S. et al. Controlling rotational state distributions using two-pulse stimulated Raman excitation. Phys. Rev. A 76, 023411 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge P. Johnsson for discussions and technical assistance provided during this project. This work is part of the research program of the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’, which is financially supported by the ‘Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO)’. Financial support by the Marie Curie Research Training Networks ‘XTRA’ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Rouzée.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 1202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghafur, O., Rouzée, A., Gijsbertsen, A. et al. Impulsive orientation and alignment of quantum-state-selected NO molecules. Nature Phys 5, 289–293 (2009). https://doi.org/10.1038/nphys1225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing