Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stylus ion trap for enhanced access and sensing

Abstract

Small, controllable, highly accessible quantum systems can serve as probes at the single-quantum level to study a number of physical effects, for example in quantum optics or for electric- and magnetic-field sensing. The applicability of trapped atomic ions as probes is highly dependent on the measurement situation at hand and thus calls for specialized traps. Previous approaches for ion traps with enhanced optical access included traps consisting of a single ring electrode1,2 or two opposing endcap electrodes2,3. Other possibilities are planar trap geometries, which have been investigated for Penning traps4,5 and radiofrequency trap arrays6,7,8. By not having the electrodes lie in a common plane, the optical access can be substantially increased. Here, we report the fabrication and experimental characterization of a novel radiofrequency ion trap geometry. It has a relatively simple structure and provides largely unrestricted optical and physical access to the ion, of up to 96% of the total 4π solid angle in one of the three traps tested. The trap might find applications in quantum optics and field sensing. As a force sensor, we estimate sensitivity to forces smaller than 1 yN Hz−1/2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pseudo-potential and trap geometry.
Figure 2: The completed trap assembly before insertion into the vacuum chamber.
Figure 3: Potential applications of the trap geometry.

Similar content being viewed by others

References

  1. Yu, N., Nagourney, W. & Dehmelt, H. Demonstration of new Paul-Straubel trap for trapping single ions. J. Appl. Phys. 69, 3779–3781 (1991).

    Article  ADS  Google Scholar 

  2. Schrama, C., Peik, E., Smith, W. & Walther, H. Novel miniature ion traps. Opt. Commun. 101, 32–36 (1993).

    Article  ADS  Google Scholar 

  3. Deslauriers, L. et al. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006).

    Article  ADS  Google Scholar 

  4. Stahl, S. et al. A planar Penning trap. Eur. Phys. J. D 32, 139–146 (2005).

    Article  ADS  Google Scholar 

  5. Castrejoan-Pita, J. R. et al. Novel designs for Penning ion traps. J. Mod. Opt. 11, 1581–1594 (2007).

    Article  ADS  Google Scholar 

  6. Chiaverini, J. et al. Surface electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5, 419–439 (2005).

    MathSciNet  MATH  Google Scholar 

  7. Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006).

    Article  ADS  Google Scholar 

  8. Pearson, C. E. et al. Experimental investigation of planar ion traps. Phys. Rev. A 73, 032307 (2006).

    Article  ADS  Google Scholar 

  9. Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).

    Article  ADS  Google Scholar 

  10. Quabis, S., Dorn, R., Eberler, M., Glöckl, O. & Leuchs, G. Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000).

    Article  ADS  Google Scholar 

  11. Lindlein, N. et al. A new 4π geometry optimized for focusing on an atom with a dipole-like radiation pattern. Laser Phys. 17, 927–934 (2007).

    Article  ADS  Google Scholar 

  12. Sondermann, M. et al. Design of a mode converter for efficient light-atom coupling in free space. Appl. Phys. B 89, 489–492 (2007).

    Article  ADS  Google Scholar 

  13. Stobińska, M., Alber, G. & Leuchs, G. Perfect excitation of a matter qubit by a single photon in free space. EPL 86, 14007 (2009).

    Article  ADS  Google Scholar 

  14. Pinotsi, D. & Imamoglu, A. Single photon absorption by a single quantum emitter. Phys. Rev. Lett. 100, 093603 (2008).

    Article  ADS  Google Scholar 

  15. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–72 (2007).

    Article  ADS  Google Scholar 

  16. Gerber, S. et al. Quantum interference from remotely trapped ions. New J. Phys. 11, 013032 (2009).

    Article  ADS  Google Scholar 

  17. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    Article  ADS  Google Scholar 

  18. Sondermann, M., Lindlein, N. & Leuchs, G. Maximizing the electric field strength in the foci of high numerical aperture optics. Preprint at <http://arxiv.org/abs/0811.2098> (2008).

  19. Mundt, A. B. et al. Coupling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett. 89, 103001 (2002).

    Article  ADS  Google Scholar 

  20. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    Article  ADS  Google Scholar 

  21. Carruthers, P. & Nieto, M. M. Coherent states and the forced quantum oscillator. Am. J. Phys. 33, 537–544 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  22. Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (1999).

    Article  ADS  Google Scholar 

  23. Labaziewicz, J. et al. Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100, 013001 (2007).

    Article  ADS  Google Scholar 

  24. Deslauriers, L. et al. Zero-point cooling and low heating of trapped 111Cd+ ions. Phys. Rev. A 70, 043408 (2004).

    Article  ADS  Google Scholar 

  25. Epstein, R. J. et al. Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007).

    Article  ADS  Google Scholar 

  26. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperature. Appl. Phys. Lett. 79, 3358–3360 (2001).

    Article  ADS  Google Scholar 

  27. Itano, W. M. et al. Quantum projection noise: Population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    Article  ADS  Google Scholar 

  28. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  29. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  ADS  Google Scholar 

  30. Vengalattore, M. et al. High-resolution magnetometry with a spinor Bose–Einstein condensate. Phys. Rev. Lett. 98, 200801 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by IARPA and the NIST Quantum Information Program. We thank C. Ospelkaus and S. Ospelkaus for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work by R.M., J.B., D.L. and J.C.B. Theoretical work by D.L., R.M., D.J.W. and G.L.

Corresponding author

Correspondence to Robert Maiwald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiwald, R., Leibfried, D., Britton, J. et al. Stylus ion trap for enhanced access and sensing. Nature Phys 5, 551–554 (2009). https://doi.org/10.1038/nphys1311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing