Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+δ

Abstract

Angle-resolved photoemission spectroscopy (ARPES) probes the momentum-space electronic structure of materials and provides invaluable information about the high-temperature superconducting cuprates1. Likewise, scanning tunnelling spectroscopy (STS) reveals the cuprates’ real-space inhomogeneous electronic structure. Recently, researchers using STS have exploited quasiparticle interference (QPI)—wave-like electrons that scatter off impurities to produce periodic interference patterns—to infer properties of the quasiparticles in momentum space. Surprisingly, some interference peaks in Bi2Sr2CaCu2O8+δ (Bi-2212) are absent beyond the antiferromagnetic zone boundary, implying the dominance of a particular scattering process2. Here, we show that ARPES detects no evidence of quasiparticle extinction: quasiparticle-like peaks are measured everywhere on the Fermi surface, evolving smoothly across the antiferromagnetic zone boundary. This apparent contradiction stems from differences in the nature of single-particle (ARPES) and two-particle (STS) processes underlying these probes. Using a simple model, we demonstrate extinction of QPI without implying the loss of quasiparticles beyond the antiferromagnetic zone boundary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quasiparticles in ARPES data.
Figure 2: Scattering-rate fits.
Figure 3: Patch calculation.

Similar content being viewed by others

References

  1. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  2. Ding, H. et al. Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission. Phys. Rev. Lett. 87, 227001 (2001).

    Article  ADS  Google Scholar 

  3. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ . Nature 422, 592–596 (2003).

    Article  ADS  Google Scholar 

  4. Hanaguri, T. et al. Quasiparticle interference and superconducting gap in Ca2−xNaxCuO2Cl2 . Nature Phys. 3, 865–871 (2007).

    Article  ADS  Google Scholar 

  5. Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ . Nature 454, 1072–1078 (2008).

    Article  ADS  Google Scholar 

  6. McElroy, K. et al. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 94, 197005 (2005).

    Article  ADS  Google Scholar 

  7. Lang, K. M. et al. Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ . Nature 415, 412–416 (2002).

    Article  ADS  Google Scholar 

  8. Feng, D. L. et al. Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ . Science 289, 277–281 (2000).

    Article  ADS  Google Scholar 

  9. Tanaka, K. et al. Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910–1913 (2006).

    Article  ADS  Google Scholar 

  10. Lee, W. S. et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007).

    Article  ADS  Google Scholar 

  11. Sato, T. et al. Low energy excitation and scaling in Bi2Sr2Can−1CunO2n+4 (n=1–3): Angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 89, 067005 (2002).

    Article  ADS  Google Scholar 

  12. Bansil, A., Lindroos, M., Sahrakorpi, S. & Markiewicz, R. S. Influence of the third dimension of quasi-two-dimensional cuprate superconductors on angle-resolved photoemission spectra. Phys. Rev. B 71, 012503 (2005).

    Article  ADS  Google Scholar 

  13. Alldredge, J. W. et al. Evolution of the electronic excitation spectrum with strongly diminishing hole density in superconducting Bi2Sr2CaCu2O8+δ . Nature Phys. 4, 319–326 (2008).

    Article  Google Scholar 

  14. Bogdanov, P. V. et al. Anomalous momentum dependence of the quasiparticle scattering rate in overdoped Bi2Sr2CaCu2O8 . Phys. Rev. Lett. 89, 167002 (2002).

    Article  ADS  Google Scholar 

  15. Fang, A. C. et al. Gap-inhomogeneity-induced electronic states in superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 96, 017007 (2006).

    Article  ADS  Google Scholar 

  16. Kampf, A. P. & Devereaux, T. P. Extended impurity potential in a d x2−y2 superconductor. Phys. Rev. B 56, 2360–2363 (1997).

    Article  ADS  Google Scholar 

  17. Zhu, J. X. Dopant-induced local pairing inhomogeneity in Bi2Sr2CaCu2O8+δ. Preprint at <http://arxiv.org/abs/cond-mat/0508646> (2005).

  18. Nunner, T. S., Chen, W., Andersen, B. M., Melikyan, A. & Hirschfeld, P. J. Fourier transform spectroscopy of d-wave quasiparticles in the presence of atomic scale pairing disorder. Phys. Rev. B 73, 104511 (2006).

    Article  ADS  Google Scholar 

  19. Johnston, S., Vernay, F. & Devereaux, T. P. Impact of an oxygen dopant in Bi2Sr2CaCu2O8+δ . Europhys. Lett. 86, 37007 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Nagaosa and J. Zaanen for helpful discussions. SSRL is operated by the US Department of Energy, Office of Basic Energy Science, Division of Chemical Science and Material Science. This work is supported by the US Department of Energy, Office of Science, Division of Materials Science, with contracts DE-AC02-76SF00515, DE-FG03-01ER45929-A001 and NSF grant DMR-0604701.

Author information

Authors and Affiliations

Authors

Contributions

I.M.V. analysed ARPES data and wrote the portions of the manuscript and Supplementary Information relevant to ARPES results. W.-S.L. carried out ARPES experiments on samples grown by T.S. and K.T. carried out experiments on samples grown by T.F. B.M. and E.A.N. wrote and modified the computer codes and carried out the computational simulations. T.P.D., B.M. and E.A.N. wrote and edited those portions of the main text and Supplementary Information relevant to the simulations. T.P.D. and Z.-X.S. are responsible for project direction, planning and infrastructure.

Corresponding author

Correspondence to T. P. Devereaux.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1059 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishik, I., Nowadnick, E., Lee, W. et al. A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+δ. Nature Phys 5, 718–721 (2009). https://doi.org/10.1038/nphys1375

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1375

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing