Abstract
Left- and right-handed chiral matter is present at every scale ranging from seashells to molecules to elementary particles. In magnetism, chirality may be inherited from the asymmetry of the underlying crystal structure, or it may emerge spontaneously. In particular, there has been a long-standing search for chiral spin states1 that emerge spontaneously with the disappearance of antiferromagnetic long-range order. Here we identify a generic system supporting such a behaviour and report on experimental evidence for chirality associated with the quantum dynamics of solitons2,3,4,5 in antiferromagnetic spin chains. The soliton chirality observed by polarized neutron scattering is in agreement with theoretical predictions and is a manifestation of a Berry phase6. Our observations provide the first example of the emergence of spin currents and hidden chiral order that accompany the disappearance of antiferromagnetic order, a scheme believed to lie at the heart of the enigmatic normal state of cuprate superconductors.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413–11423 (1989).
Takahashi, M. Thermodynamics of One Dimensional Solvable Models (Cambridge Univ. Press, Cambridge, 1999).
Brooke, J., Rosenbaum, T. F. & Aeppli, G. Tunable quantum tunneling of magnetic domain walls. Nature 413, 610–613 (2001).
Villain, J. Propagative spin relaxation in the Ising-like antiferromagnetic linear chain. Physica B 79, 1–12 (1975).
Nagler, S. E., Buyers, W. J. L., Armstrong, R. L. & Briat, B. Propagating domain walls in CsCoBr3 . Phys. Rev. Lett. 49, 590–592 (1982).
Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).
Affleck, I. Quantum spin chains and the Haldane gap. J. Phys. C 1, 3047–3072 (1989).
Bramwell, S. T. & Gingras, M. J. P. Spin ice states in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2002).
Haldane, F. D. M. “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 67, 937–940 (1991).
Lee, S. -H. et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856–858 (2002).
Christensen, N. B. et al. Dispersive excitations in the high-temperature superconductor La2−xSrxCuO4 . Phys. Rev. Lett. 93, 147002 (2004).
Hayden, S. M., Mook, H. A., Dai, P. C., Perring, T. G. & Dogan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).
Hinkov, V. et al. Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6+x . Nature 430, 650–653 (2004).
Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004).
Anderson, P. W. The resonating valence bond in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).
Bougourzi, A. H., Karbach, M. & Müller, G. Exact two-spinon dynamic structure factor of the one-dimensional s=1 2 Heisenberg-Ising antiferromagnet. Phys. Rev. B 57, 11429–11438 (1998).
Braun, H. B. & Loss, D. Chirality correlations of spin solitons: Bloch walls, spin-1 2 solitons and holes in a 2D antiferromagnetic background. Int. J. Mod. Phys. B 10, 219–234 (1996).
Maleyev, S. V. Investigation of spin chirality by polarized neutrons. Phys. Rev. Lett. 75, 4682–4685 (1996).
Nagler, S. E., Buyers, W. J. L., Armstrong, R. L. & Briat, B. Ising-like spin-1 2 quasi-one-dimensional antiferromagnets: Spin-wave response in CsCoX3 salts. Phys. Rev. B 27, 1784–1799 (1983).
Boucher, J. P. et al. Solitons in the paramagnetic and partially disordered phases of CsCoCl3 . Phys. Rev. B 31, 3015–3026 (1985).
Goff, J. P., Tennant, D. A. & Nagler, S. E. Exchange mixing and soliton dynamics in the quantum spin chain CsCoCl3 . Phys. Rev. B 52, 15992–16000 (1995).
Tun, Z., Gaulin, B. D., Rogge, R. B. & Briat, B. Critical soliton dynamics in CsCoBr3 . J. Magn. Magn. Mater. 104–107, 1045–1046 (1992).
Devreux, F. & Boucher, J. P. Solitons in Ising-like quantum spin chains in a magnetic field: a second quantization approach. J. Phys. 48, 1663–1670 (1987).
Roessli, B., Böni, P., Fischer, W. E. & Endoh, Y. Chiral fluctuations in MnSi above the Curie temperature. Phys. Rev. Lett. 88, 237204 (2002).
Plakhty, V. P., Kulda, J., Visser, D., Moskvin, E. V. & Wosnitza, J. Chiral critical exponents of the triangular-lattice antiferromagnet CsMnBr3 as determined by polarized neutron scattering. Phys. Rev. Lett. 85, 3942–3945 (2000).
Coldea, R. et al. Direct measurement of the spin Hamiltonian and observation of condensation of magnons in the 2D frustrated quantum magnet Cs2CuCl4 . Phys. Rev. Lett. 88, 137203 (2002).
Braun, H. B. & Loss, D. Berry’s phase and quantum dynamics of ferromagnetic solitons. Phys. Rev. B 53, 3237–3255 (1996).
Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).
Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, Berlin, 1994).
Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).
Acknowledgements
We acknowledge illuminating discussions with C. Broholm, J. M. D. Coey, M. Enderle, C. Helm, D. Loss, G. Müller, T. M. Rice and M. Sigrist. We thank the Institute Laue-Langevin technical staff, in particular A. Brochier, P. Flores and J. L. Ragazzoni, for their excellent support. This work was supported by the Swiss National Science Foundation, the Center for Theoretical Studies (ETHZ), Enterprise Ireland (IC/2005/0043) and the Science Foundation of Ireland under the Research Frontiers Programme (05/RFP/PHY0023).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Braun, HB., Kulda, J., Roessli, B. et al. Emergence of soliton chirality in a quantum antiferromagnet. Nature Phys 1, 159–163 (2005). https://doi.org/10.1038/nphys152
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys152
This article is cited by
-
Extreme anti-reflection enhanced magneto-optic Kerr effect microscopy
Nature Communications (2020)
-
Switching chiral solitons for algebraic operation of topological quaternary digits
Nature Physics (2017)
-
Reduced-dimensionality-induced helimagnetism in iron nanoislands
Nature Communications (2014)
-
Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice
Nature Physics (2011)
-
Quantum magnets show their hand
Nature Physics (2005)


