Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Emergence of soliton chirality in a quantum antiferromagnet

Abstract

Left- and right-handed chiral matter is present at every scale ranging from seashells to molecules to elementary particles. In magnetism, chirality may be inherited from the asymmetry of the underlying crystal structure, or it may emerge spontaneously. In particular, there has been a long-standing search for chiral spin states1 that emerge spontaneously with the disappearance of antiferromagnetic long-range order. Here we identify a generic system supporting such a behaviour and report on experimental evidence for chirality associated with the quantum dynamics of solitons2,3,4,5 in antiferromagnetic spin chains. The soliton chirality observed by polarized neutron scattering is in agreement with theoretical predictions and is a manifestation of a Berry phase6. Our observations provide the first example of the emergence of spin currents and hidden chiral order that accompany the disappearance of antiferromagnetic order, a scheme believed to lie at the heart of the enigmatic normal state of cuprate superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Soliton dispersion, chirality and two-soliton continua contributing to neutron response.
Figure 2: Soliton chirality and the Villain mode in CsCoBr3.
Figure 3: Soliton chirality in the two-soliton continuum.
Figure 4: Soliton chirality and Berry’s phase.

Similar content being viewed by others

References

  1. Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413–11423 (1989).

    Article  ADS  Google Scholar 

  2. Takahashi, M. Thermodynamics of One Dimensional Solvable Models (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  3. Brooke, J., Rosenbaum, T. F. & Aeppli, G. Tunable quantum tunneling of magnetic domain walls. Nature 413, 610–613 (2001).

    Article  ADS  Google Scholar 

  4. Villain, J. Propagative spin relaxation in the Ising-like antiferromagnetic linear chain. Physica B 79, 1–12 (1975).

    Article  Google Scholar 

  5. Nagler, S. E., Buyers, W. J. L., Armstrong, R. L. & Briat, B. Propagating domain walls in CsCoBr3 . Phys. Rev. Lett. 49, 590–592 (1982).

    Article  ADS  Google Scholar 

  6. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  7. Affleck, I. Quantum spin chains and the Haldane gap. J. Phys. C 1, 3047–3072 (1989).

    MathSciNet  Google Scholar 

  8. Bramwell, S. T. & Gingras, M. J. P. Spin ice states in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2002).

    Article  ADS  Google Scholar 

  9. Haldane, F. D. M. “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 67, 937–940 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  10. Lee, S. -H. et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856–858 (2002).

    Article  ADS  Google Scholar 

  11. Christensen, N. B. et al. Dispersive excitations in the high-temperature superconductor La2−xSrxCuO4 . Phys. Rev. Lett. 93, 147002 (2004).

    Article  ADS  Google Scholar 

  12. Hayden, S. M., Mook, H. A., Dai, P. C., Perring, T. G. & Dogan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).

    Article  ADS  Google Scholar 

  13. Hinkov, V. et al. Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6+x . Nature 430, 650–653 (2004).

    Article  ADS  Google Scholar 

  14. Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004).

    Article  ADS  Google Scholar 

  15. Anderson, P. W. The resonating valence bond in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  16. Bougourzi, A. H., Karbach, M. & Müller, G. Exact two-spinon dynamic structure factor of the one-dimensional s=1 2 Heisenberg-Ising antiferromagnet. Phys. Rev. B 57, 11429–11438 (1998).

    Article  ADS  Google Scholar 

  17. Braun, H. B. & Loss, D. Chirality correlations of spin solitons: Bloch walls, spin-1 2 solitons and holes in a 2D antiferromagnetic background. Int. J. Mod. Phys. B 10, 219–234 (1996).

    Article  ADS  Google Scholar 

  18. Maleyev, S. V. Investigation of spin chirality by polarized neutrons. Phys. Rev. Lett. 75, 4682–4685 (1996).

    Article  ADS  Google Scholar 

  19. Nagler, S. E., Buyers, W. J. L., Armstrong, R. L. & Briat, B. Ising-like spin-1 2 quasi-one-dimensional antiferromagnets: Spin-wave response in CsCoX3 salts. Phys. Rev. B 27, 1784–1799 (1983).

    Article  ADS  Google Scholar 

  20. Boucher, J. P. et al. Solitons in the paramagnetic and partially disordered phases of CsCoCl3 . Phys. Rev. B 31, 3015–3026 (1985).

    Article  ADS  Google Scholar 

  21. Goff, J. P., Tennant, D. A. & Nagler, S. E. Exchange mixing and soliton dynamics in the quantum spin chain CsCoCl3 . Phys. Rev. B 52, 15992–16000 (1995).

    Article  ADS  Google Scholar 

  22. Tun, Z., Gaulin, B. D., Rogge, R. B. & Briat, B. Critical soliton dynamics in CsCoBr3 . J. Magn. Magn. Mater. 104–107, 1045–1046 (1992).

    Article  ADS  Google Scholar 

  23. Devreux, F. & Boucher, J. P. Solitons in Ising-like quantum spin chains in a magnetic field: a second quantization approach. J. Phys. 48, 1663–1670 (1987).

    Article  Google Scholar 

  24. Roessli, B., Böni, P., Fischer, W. E. & Endoh, Y. Chiral fluctuations in MnSi above the Curie temperature. Phys. Rev. Lett. 88, 237204 (2002).

    Article  ADS  Google Scholar 

  25. Plakhty, V. P., Kulda, J., Visser, D., Moskvin, E. V. & Wosnitza, J. Chiral critical exponents of the triangular-lattice antiferromagnet CsMnBr3 as determined by polarized neutron scattering. Phys. Rev. Lett. 85, 3942–3945 (2000).

    Article  ADS  Google Scholar 

  26. Coldea, R. et al. Direct measurement of the spin Hamiltonian and observation of condensation of magnons in the 2D frustrated quantum magnet Cs2CuCl4 . Phys. Rev. Lett. 88, 137203 (2002).

    Article  ADS  Google Scholar 

  27. Braun, H. B. & Loss, D. Berry’s phase and quantum dynamics of ferromagnetic solitons. Phys. Rev. B 53, 3237–3255 (1996).

    Article  ADS  Google Scholar 

  28. Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Article  ADS  Google Scholar 

  29. Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, Berlin, 1994).

    Book  Google Scholar 

  30. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge illuminating discussions with C. Broholm, J. M. D. Coey, M. Enderle, C. Helm, D. Loss, G. Müller, T. M. Rice and M. Sigrist. We thank the Institute Laue-Langevin technical staff, in particular A. Brochier, P. Flores and J. L. Ragazzoni, for their excellent support. This work was supported by the Swiss National Science Foundation, the Center for Theoretical Studies (ETHZ), Enterprise Ireland (IC/2005/0043) and the Science Foundation of Ireland under the Research Frontiers Programme (05/RFP/PHY0023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Benjamin Braun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, HB., Kulda, J., Roessli, B. et al. Emergence of soliton chirality in a quantum antiferromagnet. Nature Phys 1, 159–163 (2005). https://doi.org/10.1038/nphys152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing