Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superconducting quantum interference proximity transistor

An Addendum to this article was published on 01 July 2010

This article has been updated

Abstract

When a superconductor is placed close to a non-superconducting metal, it can induce superconducting correlations in the metal 1,2,3,4,5,6,7,8,9,10, known as the ‘proximity effect’11. Such behaviour modifies the density of states (DOS) in the normal metal12,13,14,15 and opens a minigap12,13,16 with an amplitude that can be controlled by changing the phase of the superconducting order parameter12,15. Here, we exploit such behaviour to realize a new type of interferometer, the superconducting quantum interference proximity transistor (SQUIPT), for which the operation relies on the modulation with the magnetic field of the DOS of a proximized metal embedded in a superconducting loop. Even without optimizing its design, this device shows extremely low flux noise, down to 10−5Φ0Hz−1/2 (Φ02×10−15 Wb is the flux quantum) and dissipation several orders of magnitude smaller than in conventional superconducting interferometers17,18,19. With optimization, the SQUIPT could significantly increase the sensitivity with which small magnetic moments are detected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SQUIPT.
Figure 2: SQUIPT configuration and its predicted behaviour.
Figure 3: Magnetic-field dependence of the current–voltage characteristic.
Figure 4: Magnetic-field dependence of the voltage modulation and flux-to-voltage transfer function.
Figure 5: Temperature dependence of the voltage modulation and flux-to-voltage transfer function.

Similar content being viewed by others

Change history

  • 10 June 2010

    In the original version of this Letter published online, we had inadvertently neglected to cite some prior works that described a related device known as an Andreev interferometer. We apologize for this oversight.

References

  1. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    Article  ADS  Google Scholar 

  2. Jarillo-Herrero, P., van Dam, J. A. & Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006).

    Article  ADS  Google Scholar 

  3. Morpurgo, A. F., Kong, J., Marcus, C. M. & Dai, H. Gate-controlled superconducting proximity effect in carbon nanotubes. Science 286, 263–265 (1999).

    Article  Google Scholar 

  4. Kasumov, A. Yu. et al. Proximity-induced superconductivity in DNA. Science 291, 280–282 (2001).

    Article  ADS  Google Scholar 

  5. Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarcuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nature Nanotech. 1, 53–59 (2006).

    ADS  Google Scholar 

  6. Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

    Article  ADS  Google Scholar 

  7. Pothier, H., Guéron, S., Esteve, D. & Devoret, M. H. Flux-modulated Andreev current caused by electronic interference. Phys. Rev. Lett. 73, 2488–2491 (1994).

    Article  ADS  Google Scholar 

  8. Courtois, H., Gandit, Ph. & Pannetier, B. Proximity-induced superconductivity in a narrow metallic wire. Phys. Rev. B 52, 1162–1166 (1995).

    Article  ADS  Google Scholar 

  9. Giazotto, F. et al. Resonant transport in Nb/GaAs/AlGaAs heterostructures: Realization of the de Gennes–Saint–James model. Phys. Rev. Lett. 87, 216808 (2001).

    Article  ADS  Google Scholar 

  10. Baselmans, J. J. A., Morpurgo, A. F., van Wees, B. J. & Klapwijk, T. M. Reversing the direction of the supercurrent in a controllable Josephson junction. Nature 397, 43–45 (1999).

    Article  ADS  Google Scholar 

  11. de Gennes, P. G. Superconductivity of Metals and Alloys (W. A. Benjamin, 1966).

    MATH  Google Scholar 

  12. Belzig, W., Wilhelm, F. K., Bruder, C., Schön, G. & Zaikin, A. D. Quasiclassical Greens function approach to mesoscopic superconductivity. Superlattices Microstruct. 25, 1251–1288 (1999).

    ADS  Google Scholar 

  13. Belzig, W., Bruder, C. & Schön, G. Local density of states in a dirty normal metal connected to a superconductor. Phys. Rev. B 54, 9443–9448 (1996).

    Article  ADS  Google Scholar 

  14. Guéron, S., Pothier, H., Birge, N. O., Esteve, D. & Devoret, M. H. Superconducting proximity effect probed on a mesoscopic length scale. Phys. Rev. Lett. 77, 3025–3028 (1996).

    Article  ADS  Google Scholar 

  15. le Sueur, H., Joyez, P., Pothier, H., Urbina, C. & Esteve, D. Phase controlled superconducting proximity effect probed by tunneling spectroscopy. Phys. Rev. Lett. 100, 197002 (2008).

    Article  ADS  Google Scholar 

  16. Zhou, F., Charlat, P., Spivak, B. & Pannetier, B. Density of states in superconductor–normal metal–superconductor junctions. J. Low Temp. Phys. 110, 841–850 (1998).

    Article  ADS  Google Scholar 

  17. Clarke, J. & Braginski, A. I. (eds) The SQUID Handbook (Wiley–VCH, 2004).

  18. Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1996).

    Google Scholar 

  19. Likharev, K. K. Dynamics of Josephson Junctions and Circuits (Gordon and Breach, 1986).

    Google Scholar 

  20. Courtois, H., Meschke, M., Peltonen, J. T. & Pekola, J. P. Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101, 067002 (2008).

    Article  ADS  Google Scholar 

  21. Timofeev, A. V. et al. Recombination-limited energy relaxation in a Bardeen–Cooper–Schrieffer superconductor. Phys. Rev. Lett. 102, 017003 (2009).

    Article  ADS  Google Scholar 

  22. Pascual García, C. & Giazotto, F. Josephson current in nanofabricated V/Cu/V mesoscopic junctions. Appl. Phys. Lett. 94, 132508 (2009).

    Article  ADS  Google Scholar 

  23. Giazotto, F., Heikkilá, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  ADS  Google Scholar 

  24. Foley, C. P. & Hilgenkamp, H. Why nanoSQUIDs are important: An introduction to the focus issue. Supercond. Sci. Technol. 22, 1–5 (2009).

    Article  Google Scholar 

  25. Raufast, C. et al. Microwave-assisted magnetization reversal in individual isolated clusters of cobalt. IEEE Trans. Magn. 44, 2812–2815 (2008).

    Article  ADS  Google Scholar 

  26. Hao, L. et al. Inductive sensor based on nano-scale SQUIDs. IEEE Trans. Appl. Supercond. 15, 514–517 (2005).

    Article  ADS  Google Scholar 

  27. Gallop, J. SQUIDs: Some limits to measurement. Supercond. Sci. Technol. 16, 1575–1582 (2003).

    Article  ADS  Google Scholar 

  28. Hao, L. et al. Novel methods of fabrication and metrology of superconducting nanostructures. IEEE Trans. Instrum. Meas. 56, 392–395 (2007).

    Article  Google Scholar 

  29. Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25, 507–509 (1970).

    Article  ADS  Google Scholar 

  30. Wolf, E. L. Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, 1985).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge O. Astafiev, L. Faoro, R. Fazio, M. E. Gershenson, T. T. Heikkilä, L. B. Ioffe, V. Piazza, P. Pingue, F. Portier, H. Pothier, H. Rabani, F. Taddei and A. S. Vasenko for fruitful discussions. The work was partially supported by the INFM-CNR Seed project ‘Quantum-Dot Refrigeration: Accessing the μK Regime in Solid-State Nanosystems’, and by the NanoSciERA project ‘NanoFridge’.

Author information

Authors and Affiliations

Authors

Contributions

F.G. conceived and carried out the experiment, analysed the data, carried out the calculations and wrote the manuscript. M.M. took part in the early stage of measurements, contributed to the cryogenic set-up and to writing the manuscript. J.T.P. designed and fabricated the samples, and contributed to writing the manuscript. J.P.P. took part in the early stage of measurements, contributed to the cryogenic set-up, took part in the interpretation of the data and contributed to writing the manuscript. F.G. and J.P.P. discussed the results and implications and commented on the manuscript at all stages equally.

Corresponding author

Correspondence to Francesco Giazotto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giazotto, F., Peltonen, J., Meschke, M. et al. Superconducting quantum interference proximity transistor. Nature Phys 6, 254–259 (2010). https://doi.org/10.1038/nphys1537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing