Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermalization of a two-dimensional photonic gas in a ‘white wall’ photon box

Abstract

Bose–Einstein condensation1, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems2,3,4,5,6,7,8. The perhaps best known example of a bosonic gas, blackbody radiation9, however exhibits no Bose–Einstein condensation at low temperatures10. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered—corresponding to a vanishing chemical potential. Here we report on evidence for a thermalized two-dimensional photon gas with a freely adjustable chemical potential. Our experiment is based on a dye-filled optical microresonator, acting as a ‘white wall’ box for photons. Thermalization is achieved in a photon-number-conserving way by photon scattering off the dye molecules, and the cavity mirrors provide both an effective photon mass and a confining potential—key prerequisites for the Bose–Einstein condensation of photons. As a striking example of the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cavity mode spectrum and set-up.
Figure 2: Experimental spectra and intensity distribution.
Figure 3: Break-down of thermalization.

Similar content being viewed by others

References

  1. Einstein, A. Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung. Sitz.ber. Preuss. Akad. Wiss. 1, 3–14 (1925).

    MATH  Google Scholar 

  2. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  3. Davis, K. B., Mewes, M-O., Andrews, M. R., van Druten, N. J., Kurn, D. M. & Ketterle, W. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  Google Scholar 

  4. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose–Einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  Google Scholar 

  5. Jochim, S. et al. Bose–Einstein condensation of molecules. Science 302, 2101–2103 (2003).

    Article  ADS  Google Scholar 

  6. Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–2002 (2002).

    Article  ADS  Google Scholar 

  7. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  8. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  9. Planck, M. Über das Gesetz der Energieverteilung im Normalspectrum. Ann. Phys. 4, 553–563 (1901).

    Article  Google Scholar 

  10. Huang, K. Statistical Mechanics 2nd edn, 293–294 (Wiley, 1987).

    Google Scholar 

  11. Van Sark, W. G. J. H. M. et al. Luminescent solar concentrators—a review of recent results. Opt. Exp. 16, 21773–21792 (2008).

    Article  ADS  Google Scholar 

  12. Chiao, R. Y. Bogoliubov dispersion relation for a ‘photon fluid’: Is this a superfluid? Opt. Commun. 179, 157–166 (2000).

    Article  ADS  Google Scholar 

  13. Bolda, E. L., Chiao, R. Y. & Zurek, W. H. Dissipative optical flow in a nonlinear Fabry–Pérot cavity. Phys. Rev. Lett. 86, 416–419 (2001).

    Article  ADS  Google Scholar 

  14. Mitchell, M. W., Hancox, C. I. & Chiao, R. Y. Dynamics of atom-mediated photon–photon scattering. Phys. Rev. A 62, 043819 (2000).

    Article  ADS  Google Scholar 

  15. Jhe, W. et al. Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. Phys. Rev. Lett. 58, 666–669 (1987).

    Article  ADS  Google Scholar 

  16. De Martini, F., Jacobovitz, G. R. & Mataloni, P. Anomalous spontaneous emission time in a microscopic optical cavity. Phys. Rev. Lett. 59, 2955–2958 (1987).

    Article  ADS  Google Scholar 

  17. De Martini, F. & Jacobovitz, G. R. Anomalous spontaneous–stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity. Phys. Rev. Lett. 60, 1711–1714 (1988).

    Article  ADS  Google Scholar 

  18. Raimond, J. M., Goy, P., Gross, M., Fabre, C. & Haroche, S. Collective absorption of blackbody radiation by Rydberg atoms in a cavity: An experiment on Bose statistics and Brownian motion. Phys. Rev. Lett. 49, 117–120 (1982).

    Article  ADS  Google Scholar 

  19. Bagnato, V. & Kleppner, D. Bose–Einstein condensation in low-dimensional traps. Phys. Rev. A 44, 7439–7441 (1991).

    Article  ADS  Google Scholar 

  20. Mullin, W. J. Bose–Einstein condensation in a harmonic potential. J. Low Temp. Phys. 106, 615–641 (1997).

    Article  ADS  Google Scholar 

  21. Bohr, N. in Albert Einstein: Philosopher–Scientist (ed. Schilpp, P. A.) (The Library of Living Philosophers, Vol. VII, Open Court. La Salle, 1949).

    Google Scholar 

  22. Magde, D., Wong, R. & Seybold, P. G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem. Photobiol. 75, 327–334 (2002).

    Article  Google Scholar 

  23. Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).

    Article  ADS  Google Scholar 

  24. Jonkers, J. High power extreme ultra-violet (EUV) light sources for future lithography. Plasma Sources Sci. Technol. 15, S8–S16 (2006).

    Article  ADS  Google Scholar 

  25. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  ADS  Google Scholar 

  26. Kennard, E. H. The excitation of fluorescence in fluorescein. Phys. Rev. 29, 466–477 (1927).

    Article  ADS  Google Scholar 

  27. McCumber, D. E. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev. 136, A954–A957 (1964).

    Article  ADS  Google Scholar 

  28. Sawicki, D. A. & Knox, R. S. Universal relationship between optical emission and absorption of complex systems: An alternative approach. Phys. Rev. A 54, 4837–4841 (1996).

    Article  ADS  Google Scholar 

  29. Kogelnik, H. & Li, T. Laser beams and resonators. Appl. Opt. 5, 1550–1567 (1966).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Schelle for experimental contributions during the early phase of this project. Financial support from the Deutsche Forschungsgemeinschaft within the focused research unit FOR557 is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and M.W. contributed to the experimental idea; J.K. carried out the experiments. All authors analysed the experimental data and discussed the results.

Corresponding author

Correspondence to Martin Weitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaers, J., Vewinger, F. & Weitz, M. Thermalization of a two-dimensional photonic gas in a ‘white wall’ photon box. Nature Phys 6, 512–515 (2010). https://doi.org/10.1038/nphys1680

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing