Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A disordered insulator in an optical lattice

Abstract

Disorder can profoundly affect the transport properties of a wide range of quantum materials. At present, significant disagreement exists regarding features of the disordered Bose–Hubbard model, which is used to study disorder in strongly correlated bosonic systems1,2. Here, by measuring transport3 in a disordered optical lattice4, we discover a disorder-induced superfluid-to-insulator transition in this system, in quantitative agreement with a predicted superfluid–Bose-glass transition from recent numerical simulations5. Both the superfluid-to-insulator transition and correlated changes in the atomic quasimomentum distribution—which verify a simple model for the interplay of disorder and interactions in this system—are phenomena new to the unit-filling regime explored in this work. We find that increasing disorder strength generically leads to greater dissipation, excluding predictions of a disorder-induced or ‘re-entrant’ superfluid. Whereas the absence of a re-entrant superfluid may be explained by finite temperature, the measured bounds on entropy strongly constrain theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of disorder on transport.
Figure 2: Effect of disorder on atomic quasimomentum distribution.
Figure 3: Bounds on entropy per particle.

Similar content being viewed by others

References

  1. Lewenstein, M. et al. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).

    Article  ADS  Google Scholar 

  2. Sanchez-Palencia, L. & Lewenstein, M. Disordered quantum gases under control. Nature Phys. 6, 87–95 (2010).

    Article  ADS  Google Scholar 

  3. McKay, D., White, M., Pasienski, M. & DeMarco, B. Phase-slip-induced dissipation in an atomic Bose–Hubbard system. Nature 453, 76–79 (2008).

    Article  ADS  Google Scholar 

  4. White, M. et al. Strongly interacting bosons in a disordered optical lattice. Phys. Rev. Lett. 102, 055301 (2009).

    Article  ADS  Google Scholar 

  5. Gurarie, V., Pollet, L., Prokof’ev, N. V., Svistunov, B. V. & Troyer, M. Phase diagram of the disordered Bose–Hubbard model. Phys. Rev. B 80, 214519 (2009).

    Article  ADS  Google Scholar 

  6. Trivedi, N. in Proc. of the 20th International Workshop on Condensed Matter Theories Vol. 12 141–157 (Plenum Press, 1997).

    Google Scholar 

  7. Bissbort, U. & Hofstetter, W. Stochastic mean-field theory for the disordered Bose–Hubbard model. Europhys. Lett. 86, 50007 (2009).

    Article  ADS  Google Scholar 

  8. Wu, J. & Phillips, P. Minimal model for disorder-induced missing moment of inertia in solid 4He. Phys. Rev. B 78, 014515 (2008).

    Article  ADS  Google Scholar 

  9. Pollet, L., Prokof’ev, N. V., Svistunov, B. V. & Troyer, M. Absence of a direct superfluid to Mott insulator transition in disordered Bose systems. Phys. Rev. Lett. 103, 140402 (2009).

    Article  ADS  Google Scholar 

  10. Kruger, F., Wu, J. & Phillips, P. Anomalous suppression of the Bose glass at commensurate fillings in the disordered Bose–Hubbard model. Phys. Rev. B 80, 094526 (2009).

    Article  ADS  Google Scholar 

  11. Giamarchi, T. & Schulz, H. J. Localization and interaction in one-dimensional quantum fluids. Europhys. Lett. 3, 1287–1293 (1987).

    Article  ADS  Google Scholar 

  12. Fallani, L., Lye, J. E., Guarrera, V., Fort, C. & Inguscio, M. Ultracold atoms in a disordered crystal of light: Towards a Bose glass. Phys. Rev. Lett. 98, 130404 (2007).

    Article  ADS  Google Scholar 

  13. Roscilde, T. Bosons in one-dimensional incommensurate superlattices. Phys. Rev. A 77, 063605 (2008).

    Article  ADS  Google Scholar 

  14. Damski, B., Zakrzewski, J., Santos, L., Zoller, P. & Lewenstein, M. Atomic Bose and Anderson glasses in optical lattices. Phys. Rev. Lett. 91, 080403 (2003).

    Article  ADS  Google Scholar 

  15. Lye, J. E. et al. Bose–Einstein condensate in a random potential. Phys. Rev. Lett. 95, 070401 (2005).

    Article  ADS  Google Scholar 

  16. Chen, Y. P. et al. Phase coherence and superfluid–insulator transition in a disordered Bose–Einstein condensate. Phys. Rev. A 77, 033632 (2008).

    Article  ADS  Google Scholar 

  17. Clement, D. et al. Suppression of transport of an interacting elongated Bose–Einstein condensate in a random potential. Phys. Rev. Lett. 95, 170409 (2005).

    Article  ADS  Google Scholar 

  18. Schulte, T. et al. Routes towards Anderson-like localization of Bose–Einstein condensates in disordered optical lattices. Phys. Rev. Lett. 95, 170411 (2005).

    Article  ADS  Google Scholar 

  19. Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).

    Article  ADS  Google Scholar 

  20. Roati, G. et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895–898 (2008).

    Article  ADS  Google Scholar 

  21. DeMarco, B., Lannert, C., Vishveshwara, S. & Wei, T-C. Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice. Phys. Rev. A 71, 063601 (2005).

    Article  ADS  Google Scholar 

  22. Delande, D. & Zakrzewski, J. Compression as a tool to detect Bose glass in a cold atomic gas. Phys. Rev. Lett. 102, 085301 (2009).

    Article  ADS  Google Scholar 

  23. Fisher, M. P., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  ADS  Google Scholar 

  24. McKay, D., White, M. & DeMarco, B. Lattice thermodynamics for ultra-cold atoms. Phys. Rev. A 79, 063605 (2009).

    Article  ADS  Google Scholar 

  25. Krauth, W., Trivedi, N. & Ceperley, D. Superfluid–insulator transition in disordered boson systems. Phys. Rev. Lett. 67, 2307–2310 (1991).

    Article  ADS  Google Scholar 

  26. Scalettar, R. T., Batrouni, G. G. & Zimanyi, G. T. Localization in interacting, disordered, Bose systems. Phys. Rev. Lett. 66, 3144–3147 (1991).

    Article  ADS  Google Scholar 

  27. Lu, X. & Yu, Y. Finite-temperature effects on the number fluctuation of ultracold atoms across the superfluid-to-Mott-insulator transition. Phys. Rev. A 74, 063615 (2006).

    Article  ADS  Google Scholar 

  28. Freericks, J. K. & Monien, H. Strong-coupling expansions for the pure and disordered Bose–Hubbard model. Phys. Rev. B 53, 2691–2700 (1996).

    Article  ADS  Google Scholar 

  29. Catani, J. et al. Entropy exchange in a mixture of ultracold atoms. Phys. Rev. Lett. 103, 140401 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DARPA OLE program (ARO award W911NF-08-1-0021), the Sloan Foundation and the National Science Foundation (award 0448354). D.M. acknowledges support from NSERC.

Author information

Authors and Affiliations

Authors

Contributions

M.P., M.W., D.M. and B.D. conceived and designed the experiments. M.P., D.M. and B.D. analysed the data, which were acquired by M.P.

Corresponding author

Correspondence to B. DeMarco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasienski, M., McKay, D., White, M. et al. A disordered insulator in an optical lattice. Nature Phys 6, 677–680 (2010). https://doi.org/10.1038/nphys1726

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing