Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Circuit quantum electrodynamics in the ultrastrong-coupling regime

Abstract

In circuit quantum electrodynamics1,2,3,4,5,6,7,8,9,10 (QED), where superconducting artificial atoms are coupled to on-chip cavities, the exploration of fundamental quantum physics in the strong-coupling regime has greatly evolved. In this regime, an atom and a cavity can exchange a photon frequently before coherence is lost. Nevertheless, all experiments so far are well described by the renowned Jaynes–Cummings model11. Here, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling limit12,13, where the atom–cavity coupling rate g reaches a considerable fraction of the cavity transition frequency ωr. Furthermore, we present direct evidence for the breakdown of the Jaynes–Cummings model. We reach remarkable normalized coupling rates g/ωr of up to 12% by enhancing the inductive coupling14 of a flux qubit to a transmission line resonator. Our circuit extends the toolbox of quantum optics on a chip towards exciting explorations of ultrastrong light–matter interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum circuit and experimental set-up.
Figure 2: Qubit microwave spectroscopy and low-power transmission spectra.
Figure 3: Breakdown of the Jaynes–Cummings model.

Similar content being viewed by others

References

  1. Blais, A., Huang, R-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  2. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  MATH  Google Scholar 

  3. Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004).

    Article  ADS  MATH  Google Scholar 

  4. Johansson, J. et al. Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006).

    Article  ADS  MATH  Google Scholar 

  5. Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    Article  ADS  MATH  Google Scholar 

  6. Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007).

    Article  ADS  MATH  Google Scholar 

  7. Deppe, F. et al. Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED. Nature Phys. 4, 686–691 (2008).

    Article  ADS  MATH  Google Scholar 

  8. Fink, J. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008).

    Article  ADS  MATH  Google Scholar 

  9. Abdumalikov, A., Astafiev, O., Nakamura, Y., Pashkin, Y. & Tsai, J. Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator. Phys. Rev. B 78, 180502 (2008).

    Article  ADS  MATH  Google Scholar 

  10. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    Article  ADS  MATH  Google Scholar 

  11. Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

    Article  MATH  Google Scholar 

  12. Ciuti, C. & Carusotto, I. Input–output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters. Phys. Rev. A 74, 033811 (2006).

    Article  ADS  MATH  Google Scholar 

  13. Devoret, M., Girvin, S. & Schoelkopf, R. Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be? Ann. Phys. 16, 767–779 (2007).

    Article  MATH  Google Scholar 

  14. Bourassa, J. et al. Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Phys. Rev. A 80, 032109 (2009).

    Article  ADS  MATH  Google Scholar 

  15. Niemczyk, T. et al. Fabrication technology of and symmetry breaking in superconducting quantum circuits. Supercond. Sci. Technol. 22, 034009 (2009).

    Article  ADS  MATH  Google Scholar 

  16. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    Article  ADS  MATH  Google Scholar 

  17. Bishop, L. et al. Nonlinear response of the vacuum Rabi resonance. Nature Phys. 5, 105–109 (2008).

    Article  ADS  MATH  Google Scholar 

  18. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  MATH  Google Scholar 

  19. Walther, H., Varcoe, B. T. H., Englert, B-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006).

    Article  ADS  MATH  Google Scholar 

  20. Haroche, S. & Raimond, J-M. Exploring the Quantum (Oxford Univ. Press, 2006).

    Book  MATH  Google Scholar 

  21. Reithmaier, J. P. et al. Strong coupling in a single quantum dot semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  22. Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009).

    Article  ADS  MATH  Google Scholar 

  23. Günter, G. et al. Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 458, 178–181 (2009).

    Article  ADS  MATH  Google Scholar 

  24. Anappara, A. et al. Signatures of the ultrastrong light–matter coupling regime. Phys. Rev. B 79, 201303 (2009).

    Article  ADS  Google Scholar 

  25. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

    Article  MATH  Google Scholar 

  26. Schuster, D. I. et al. Ac stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    Article  ADS  MATH  Google Scholar 

  27. Sabin, C., Garcia-Ripoll, J. J., Solano, E. & Leon, J. Dynamics of entanglement via propagating microwave photons. Phys. Rev. B 81, 184501 (2010).

    Article  ADS  Google Scholar 

  28. Hines, A. P., Dawson, C. M., McKenzie, R. H. & Milburn, G. J. Entanglement and bifurcations in Jahn-Teller models. Phys. Rev. A 70, 022303 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Peropadre, B., Forn-Diaz, P., Solano, E. & Garcia-Ripoll, J. J. Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett. 105, 023601 (2010).

    Article  ADS  Google Scholar 

  30. Zueco, D., Reuther, G. M., Kohler, S. & Hanggi, P. Qubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation. Phys. Rev. A 80, 033846 (2009).

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank G. M. Reuther for discussions and T. Brenninger, C. Probst and K. Uhlig for technical support. We acknowledge financial support by the Deutsche Forschungsgemeinschaft through SFB 631 and the German Excellence Initiative through NIM. E.S. acknowledges financial support from UPV/EHU Grant GIU07/40, Ministerio de Ciencia e Innovación FIS2009-12773-C02-01, Basque Government Grant IT472-10, European Projects EuroSQIP and SOLID. D.Z. acknowledges financial support from FIS2008-01240 and FIS2009-13364-C02-0 (MICINN).

Author information

Authors and Affiliations

Authors

Contributions

T.N. fabricated the sample, conducted the experiment and analysed the data presented in this work. F.D. provided important contributions regarding the interpretation of the results. T.N. and F.D. co-wrote the manuscript. J.J.G-R. provided the basic idea and the techniques for the numerical analysis of the data. E.S. and J.J.G-R. supervised the interpretation of the data. D.Z. and T.H. contributed to the understanding of the results and developed an analytical model of our system. H.H. contributed to the numerical analysis and helped with the experiment. E.P.M. contributed strongly to the experimental set-up. M.J.S. and F.H. contributed to discussions and helped edit the manuscript. A.M. and R.G. supervised the experimental part of the work.

Corresponding author

Correspondence to T. Niemczyk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemczyk, T., Deppe, F., Huebl, H. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Phys 6, 772–776 (2010). https://doi.org/10.1038/nphys1730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing