Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Noise-powered probabilistic concentration of phase information

Abstract

Phase-insensitive optical amplification of an unknown quantum state is known to be a fundamentally noisy operation that inevitably adds noise to the amplified state1,2,3,4,5. However, this fundamental noise penalty in amplification can be circumvented by resorting to a probabilistic scheme as recently proposed and demonstrated in refs 6, 7, 8. These amplifiers are based on highly non-classical resources in a complex interferometer. Here we demonstrate a probabilistic quantum amplifier beating the fundamental quantum limit using a thermal-noise source and a photon-number-subtraction scheme9. The experiment shows, surprisingly, that the addition of incoherent noise leads to a noiselessly amplified output state with a phase uncertainty below the uncertainty of the state before amplification. This amplifier might become a valuable quantum tool in future quantum metrological schemes and quantum communication protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic concept and experimental set-up.
Figure 2: Theoretical gain and normalized phase variance versus the mean number of added thermal photons.
Figure 3: Tomographic reconstruction of output states.
Figure 4: Comparison between theoretical and experimental results.

Similar content being viewed by others

References

  1. Louisell, W. H. et al. Quantum fluctuations and noise in parametric processes. I. Phys. Rev. 124, 1646–1654 (1961).

    Article  ADS  MATH  Google Scholar 

  2. Haus, H. A. & Mullen, J. A. Quantum noise in linear amplifiers. Phys. Rev. 128, 2407–2413 (1962).

    Article  ADS  MATH  Google Scholar 

  3. Caves, C. M. Quantum limits on the noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  MATH  Google Scholar 

  4. Ou, Z. Y., Pereira, S. F. & Kimble, H. J. Quantum noise reduction in optical amplification. Phys. Rev. Lett. 70, 3239–3242 (1993).

    Article  ADS  MATH  Google Scholar 

  5. Josse, V. et al. Universal optical amplification without nonlinearity. Phys. Rev. Lett. 96, 163602 (2006).

    Article  ADS  Google Scholar 

  6. Ralph, T. C. & Lund, A. B. in Quantum Communication Measurement and Computing Proc. 9th Int. Conf. (ed. Lvovsky, A.) 155–160 (AIP, 2009).

    MATH  Google Scholar 

  7. Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N. & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nature Photon. 4, 316–319 (2010).

    Article  MATH  Google Scholar 

  8. Ferreyrol, F. et al. Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603 (2010).

    Article  ADS  MATH  Google Scholar 

  9. Marek, P. & Filip, R. Coherent-state phase concentration by quantum probabilistic amplification. Phys. Rev. A 81, 022302 (2010).

    Article  ADS  MATH  Google Scholar 

  10. Dirac, P. A. M. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927).

    Article  ADS  MATH  Google Scholar 

  11. Shapiro, J. H., Shepard, S. R. & Wong, N. C. Ultimate quantum limits on phase measurement. Phys. Rev. Lett. 62, 2377–2380 (1989).

    Article  ADS  MATH  Google Scholar 

  12. Fiurášek, J. Engineering quantum operations on travelling light beams by multiple photon addition and subtraction. Phys. Rev. A 80, 053822 (2009).

    Article  ADS  MATH  Google Scholar 

  13. Menzies, D. & Croke, S. Noiseless linear amplification via weak measurements. Preprint at http://arxiv.org/abs/0903.4181v1 (2009).

  14. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article  ADS  MATH  Google Scholar 

  15. Neergaard-Nielsen, J. S., Melholt Nielsen, B., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).

    Article  ADS  Google Scholar 

  16. Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008).

    Article  ADS  Google Scholar 

  17. Wiseman, H. & Kilip, R. B. Adaptive single-shot phase measurements: The full quantum theory. Phys. Rev. A 57, 2169–2185 (1998).

    Article  ADS  MATH  Google Scholar 

  18. Armen, M. A. et al. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 89, 133602 (2002).

    Article  ADS  MATH  Google Scholar 

  19. Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B: Quantum Semiclass. Opt. 6, 556–559 (2004).

    Article  ADS  MATH  Google Scholar 

  20. Hradil, Z. Quantum-state estimation. Phys. Rev. A 6, R1561–R1564 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wittmann, C. et al. Demonstration of near-optimal discrimination of optical coherent states. Phys. Rev. Lett. 101, 210501 (2008).

    Article  ADS  MATH  Google Scholar 

  22. Banaszek, K. et al. Direct measurement of the Wigner function by photon counting. Phys. Rev. A 60, 674–677 (1999).

    Article  ADS  MATH  Google Scholar 

  23. Wittmann, C. et al. Demonstration of coherent state discrimination using a displacement controlled photon number resolving detector. Phys. Rev. Lett. 104, 100505 (2010).

    Article  ADS  MATH  Google Scholar 

  24. Holevo, A. S. Covariant measurements and imprimitivity systems. Lect. Notes Math. 1055, 153–172 (1982).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU project COMPAS, the BIOP Graduate school, the Lundbeck foundation and the DFG project LE 408/19-1. R.F. and P.M. acknowledge support from projects No. MSM 6198959213 and No. LC06007 of the Czech Ministry of Education, the Grant 202/08/0224 of GA CR and the Alexander von Humboldt Foundation. P.M. acknowledges support from the Grant P205/10/P319 of GA CR.

Author information

Authors and Affiliations

Authors

Contributions

M.A.U., C.R.M. and C.W. carried out the experimental work, P.M. and R.F. did the theoretical calculations and all authors discussed the results. U.L.A., M.A.U. and C.R.M. wrote the manuscript and Ch.M., G.L. and U.L.A. coordinated the project.

Corresponding authors

Correspondence to Mario A. Usuga, Christian R. Müller or Ulrik L. Andersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usuga, M., Müller, C., Wittmann, C. et al. Noise-powered probabilistic concentration of phase information. Nature Phys 6, 767–771 (2010). https://doi.org/10.1038/nphys1743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing