Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous formation and optical manipulation of extended polariton condensates

Abstract

Cavity exciton-polaritons1,2 (polaritons) are bosonic quasi-particles offering a unique solid-state system for investigating interacting condensates3,4,5,6,7,8,9,10. Up to now, disorder-induced localization and short lifetimes4,6,11 have prevented the establishment of long-range off-diagonal order12 needed for any quantum manipulation of the condensate wavefunction. In this work, using a wire microcavity with polariton lifetimes much longer than in previous samples, we show that polariton condensates can propagate over macroscopic distances outside the excitation area, while preserving their spontaneous spatial coherence. An extended condensate wavefunction builds up with a degree of spatial coherence larger than 50% over distances 50 times the polariton de Broglie wavelength. The expansion of the condensate is shown to be governed by the repulsive potential induced by photogenerated excitons within the excitation area. The control of this local potential offers a new and versatile method to manipulate extended polariton condensates. As an illustration, we demonstrate synchronization of extended condensates by controlled tunnel coupling13,14 and localization of condensates in a trap with optically controlled dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cavity polaritons confined in a microwire cavity.
Figure 2: Condensation and spatial spreading of cavity polaritons in microwires.
Figure 3: Macroscopic off-diagonal long-range order.
Figure 4: Manipulation of the condensate wavefunction.

Similar content being viewed by others

References

  1. Weisbuch, C. et al. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  2. Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2007).

    Book  Google Scholar 

  3. Deng, H. et al. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  ADS  Google Scholar 

  4. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  5. Balili, R. et al. Bose Einstein condensation of microcavity polaritons in trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  6. Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).

    Article  ADS  Google Scholar 

  7. Bajoni, D. et al. Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).

    Article  ADS  Google Scholar 

  8. Christopoulos, C. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    Article  ADS  Google Scholar 

  9. Christmann, G. et al. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    Article  ADS  Google Scholar 

  10. Wertz, E. et al. Spontaneous formation of a polariton condensate in a planar GaAs microcavity. Appl. Phys. Lett. 95, 051108 (2009).

    Article  ADS  Google Scholar 

  11. Deng, H. et al. Spatial coherence of polaritons condensates. Phys. Rev. Lett. 99, 126403 (2007).

    Article  ADS  Google Scholar 

  12. Penrose, O. & Onsager, L. Bose Einstein condensation and liquid Helium. Phys. Rev. 104, 576–584 (1954).

    Article  ADS  Google Scholar 

  13. Baas, A. et al. Synchronized and desynchronized phases of exciton-polariton condensates in the presence of disorder. Phys. Rev. Lett. 100, 170401 (2008).

    Article  ADS  Google Scholar 

  14. Wouters, M. Synchronized and desynchronized phases of coupled nonequilibrium exciton-polariton condensates. Phys. Rev. B 77, 121302(R) (2008).

    Article  ADS  Google Scholar 

  15. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).

    Article  ADS  Google Scholar 

  16. Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974–976 (2009).

    Article  ADS  Google Scholar 

  17. Usonomiya, S. et al. Observation of Bogoliubov excitations in exciton-polaritons condensates. Nature Phys. 4, 700–705 (2008).

    Article  Google Scholar 

  18. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  ADS  Google Scholar 

  19. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  ADS  Google Scholar 

  20. Kavokin, A., Malpuech, G. & Laussy, F. P. Polariton laser and polariton superfluidity in microcavities. Phys. Lett. A 306, 187–199 (2003).

    Article  ADS  Google Scholar 

  21. Keeling, J. et al. Polariton condensation with localized excitons and propagating photons. Phys. Rev. Lett. 93, 226403 (2004).

    Article  ADS  Google Scholar 

  22. Liew, T. C. H., Kavokin, A. V. & Shelykh, I. A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).

    Article  ADS  Google Scholar 

  23. Shelykh, I. A., Pavlovic, G., Solnyshkov, D. D. & Malpuech, G. Proposal for a mesoscopic optical Berry-phase interferometer. Phys. Rev. Lett. 102, 046407 (2009).

    Article  ADS  Google Scholar 

  24. Krizhanovskii, D. N. et al. Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities. Phys. Rev. B 80, 045317 (2009).

    Article  ADS  Google Scholar 

  25. Dasbach, G. et al. Tailoring the polariton dispersion by optical confinement: Access to a manifold of elastic polariton pair scattering channels. Phys. Rev. B 66, 201201(R) (2002).

    Article  ADS  Google Scholar 

  26. Wouters, M., Carusotto, I. & Ciuti, C. Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates. Phys. Rev. B 77, 115340 (2008).

    Article  ADS  Google Scholar 

  27. Dubin, F. et al. Macroscopic coherence of a single exciton state in an organic quantum wire. Nature Phys. 2, 32–35 (2005).

    Article  ADS  Google Scholar 

  28. Idrissi Kaitouni, R. et al. Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B 74, 155311 (2006).

    Article  ADS  Google Scholar 

  29. Sanvitto, D. et al. Exciton-polariton condensation in a natural two-dimensional trap. Phys. Rev. B 80, 045301 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the C’Nano Ile de France contract ‘Sophiie2’, by the ANR contract PNANO- 07-005 GEMINI, by the FP7 ITN ‘Clermont4’ (235114) and by the FP7 ITN ‘Spin-Optronics’ (237252).

Author information

Authors and Affiliations

Authors

Contributions

E.W., L.F. and J.B. carried out the experiments and analysed the data. D.D.S., R.J., A.V.K. and G.M. theoretically studied the data. D.S. participated in some experiments. A.L. grew the sample, I.S. etched the microwires and R.G. gave fruitful advice for the Young slit experiments. P.S. did the electron-beam lithography, interpreted the data and wrote the paper. J.B. supervised the work and wrote the paper.

Corresponding author

Correspondence to J. Bloch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 529 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wertz, E., Ferrier, L., Solnyshkov, D. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys 6, 860–864 (2010). https://doi.org/10.1038/nphys1750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing