Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatially modulated 'Mottness' in La2-xBaxCuO4

Abstract

Competition between magnetism and the kinetic energy of mobile carriers (typically holes) in doped antiferromagnets may lead to ‘stripe’ phases1,2,3,4, which are charged rivers separating regions of oppositely phased antiferromagnetism. In copper oxides the main experimental evidence for such coexisting static spin and charge order comes from neutron scattering in La1.48Nd0.4Sr0.12CuO4 (LNSCO; ref. 5) and La1.875Ba0.125CuO4 (LBCO; ref. 6). However, as a neutron is neutral, it does not detect charge but rather its associated lattice distortion7, so it is not known whether the stripes involve ordering of the doped holes. Here we present a study of the charge order in LBCO with resonant soft X-ray scattering (RSXS). We observe giant resonances near the Fermi level as well as near the correlated gap8,9, demonstrating significant modulation in both the doped-hole density and the ‘Mottness’, or the degree to which the system resembles a Mott insulator10. The peak-to-trough amplitude of the valence modulation is estimated to be 0.063 holes, which suggests11 an integrated area of 0.59 holes under a single stripe, close to the expected 0.5 for half-filled stripes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A ‘resonance profile’, that is, the energy dependence of the (1/4,0,L) charge scattering compared with XAS.
Figure 2: Reciprocal space map of charge correlations in the (H, 0, L) plane.
Figure 3: Determining the X-ray form factor, fDmn(ω), for a single doped hole.
Figure 4: Temperature dependence of the charge scattering.

Similar content being viewed by others

References

  1. Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and magnetism of high-Tc oxides. Phys. Rev. B 40, R7391–R7394 (1989).

    Article  ADS  Google Scholar 

  2. Löw, U., Emery, V. J., Fabricius, K. & Kivelson, S. A. Study of an Ising model with competing long- and short-range interactions. Phys. Rev. Lett. 72, 1918–1921 (1994).

    Article  ADS  Google Scholar 

  3. Machida, K. Magnetism in La2CuO4 based compounds. Physica C 158, 192–196 (1989).

    Article  ADS  Google Scholar 

  4. Poilblanc, D. & Rice, T. M. Charged solitons in the Hartree-Fock approximation to the large-U Hubbard model. Phys. Rev. B 39, 9749–9752 (1989).

    Article  ADS  Google Scholar 

  5. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper-oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  6. Fujita, M., Goka, H., Yamada, K. & Matsuda, M. Competition between charge- and spin-density-wave order and superconductivity in La1.875Ba0.125−xSrxCuO4 . Phys. Rev. Lett. 88, 167008 (2002).

    Article  ADS  Google Scholar 

  7. Tranquada, J. M. et al. Neutron-scattering study of stripe-phase order of holes and spins in La1.48Nd0.4Sr0.12CuO4 . Phys. Rev. B 54, 7489–7499 (1996).

    Article  ADS  Google Scholar 

  8. Chen, C. T. et al. Out-of-plane orbital characters of intrinsic and doped holes in La2−xSrxCuO4 . Phys. Rev. Lett. 68, 2543–2546 (1992).

    Article  ADS  Google Scholar 

  9. Eskes, H. & Sawatzky, G. A. Doping-dependence of high-energy spectral weights for the high-Tc cuprates. Phys. Rev. B 43, 119–129 (1991).

    Article  ADS  Google Scholar 

  10. Stanescu, T. D. & Phillips, P. Nonperturbative approach to full Mott behavior. Phys. Rev. B 69, 245104 (2004).

    Article  ADS  Google Scholar 

  11. Lorenzana, J. & Seibold, G. Metallic mean-field stripes, incommensurability, and chemical potential in cuprates. Phys. Rev. Lett. 89, 136401 (2002).

    Article  ADS  Google Scholar 

  12. Moodenbaugh, A. R., Xu, Y., Suenaga, M., Folkerts, T. J. & Shelton, R. N. Superconducting properties of La2−xBaxCuO4 . Phys. Rev. B 38, 4596–4600 (1988).

    Article  ADS  Google Scholar 

  13. Hill, J. P., Helgesen, G. & Gibbs, D. X-ray-scattering study of charge- and spin-density waves in chromium. Phys. Rev. B 51, 10336 (1995).

    Article  ADS  Google Scholar 

  14. Abbamonte, P. et al. A structural probe of the doped holes in copper-oxide superconductors. Science 297, 581–584 (2002).

    Article  ADS  Google Scholar 

  15. Wilkins, S. B. et al. Direct observation of orbital ordering in La0.5Sr1.5MnO4 using soft x-ray diffraction. Phys. Rev. Lett. 91, 167205 (2003).

    Article  ADS  Google Scholar 

  16. Thomas, K. J. et al. Soft x-ray resonant diffraction study of magnetic and orbital correlations in a manganate near half doping. Phys. Rev. Lett. 92, 237204 (2004).

    Article  ADS  Google Scholar 

  17. Abbamonte, P. et al. Crystallization of charge holes in the spin ladder of Sr14Cu24O41 . Nature 431, 1078–1081 (2004).

    Article  ADS  Google Scholar 

  18. Dhesi, S. S. et al. Unraveling orbital ordering in La0.5Sr1.5MnO4 . Phys. Rev. Lett. 92, 56403 (2004).

    Article  ADS  Google Scholar 

  19. Freeland, J. W. et al. Full bulk spin polarization and intrinsic tunnel barriers at the surface of layered manganates. Nature Mater. 4, 62–67 (2005).

    Article  ADS  Google Scholar 

  20. Schüßler-Langeheine, C. et al. Spectroscopy of stripe order in La1.8Sr1.2NiO4 using resonant soft x-ray diffraction. Phys. Rev. Lett. 95, 156402 (2005).

    Article  ADS  Google Scholar 

  21. Gu, G. D., Takamuku, K., Koshizuka, N. & Tanaka, S. Large single crystal Bi-2212 along the c-axis prepared by floating zone method. J. Cryst. Growth 130, 325–329 (1993).

    Article  ADS  Google Scholar 

  22. Eskes, H., Meinders, M. B. J. & Sawatzky, G. A. Anomalous transfer of spectral weight in doped strongly correlated systems. Phys. Rev. Lett. 67, 1035–1038 (1991).

    Article  ADS  Google Scholar 

  23. Kimura, H. et al. Synchrotron x-ray diffraction of a charge stripe order in 1/8-doped La1.875Ba0.125−xSrxCuO4 . Phys. Rev. B 67, R140504 (2003).

    Article  Google Scholar 

  24. von Zimmermann, M. et al. Hard-X-ray diffraction study of charge stripe order in La1.48Nd0.4Sr0.12CuO4 . Europhys. Lett. 41, 629–634 (1998).

    Article  ADS  Google Scholar 

  25. Warren, B. E. X-Ray Diffraction (Dover, New York, 1990).

    Google Scholar 

  26. Axe, J. D. et al. Structural phase transitions and superconductivity in La2−xBaxCuO4 . Phys. Rev. Lett. 62, 2751–2754 (1989).

    Article  ADS  Google Scholar 

  27. Hanaguri, T. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2 . Nature 430, 1001–1005 (2004).

    Article  ADS  Google Scholar 

  28. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92 . At. Data Nucl. Data Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge T. Valla for assistance with sample cleaving and discussions with S. K. Sinha, J. M. Tranquada, C. Schüßler-Langheine, P. A. Lee and W. Ku. This work was supported by the US Department of Energy, NWO (Dutch Science Foundation) and FOM (Netherlands Organization for Fundamental Research on Matter).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Abbamonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbamonte, P., Rusydi, A., Smadici, S. et al. Spatially modulated 'Mottness' in La2-xBaxCuO4. Nature Phys 1, 155–158 (2005). https://doi.org/10.1038/nphys178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing