Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates

Abstract

The discovery of the pseudogap in the cuprates1,2,3 created significant excitement as it was believed to be a signature of pairing4, in some cases above room temperature. Indeed, a number of experiments detected phase-fluctuating superconductivity above the transition temperature Tc (refs 5, 6, 7 8, 9). However, several recent experiments reported that the pseudogap and superconducting state are characterized by different energy scales10,11,12,13,14, and probably compete with each other15,16, leaving open the question of whether the pseudogap is caused by pair formation. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region commonly referred to as the pseudogap, two distinct states coexist: one that is due to pair formation and persists to an intermediate temperature Tpair<T* and a second—the ‘proper’ pseudogap—characterized by the loss of spectral weight and anomalies in transport properties that extends up to T*. Tpair has a value around 120–150 K even for materials with very different Tc values and it probably sets a limit on the highest attainable Tc in the cuprates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the spectral weight at the Fermi energy.
Figure 2: Doping and temperature dependence of spectral weight at the Fermi energy.
Figure 3: Universal scaling behaviour of the pairing spectral weight.
Figure 4: Phase diagrams obtained using pairing and pseudogap spectral weights.

Similar content being viewed by others

References

  1. Warren, W. W. et al. Cu spin dynamics and superconducting precursor effects in planes above Tc in YBa2Cu3O6.7 . Phys. Rev. Lett. 62, 1193–1196 (1989).

    Article  ADS  Google Scholar 

  2. Takigawa, M. et al. Cu and O NMR-studies of the magnetic properties of YBa2Cu3O6.63 (Tc=62 K). Phys. Rev. B 43, 247–257 (1991).

    Article  ADS  Google Scholar 

  3. Homes, C. C., Timusk, T., Liang, R., Bonn, D. A. & Hardy, W. N. Optical conductivity of c-axis oriented YBa2Cu3O6.70—evidence for a pseudogap. Phys. Rev. Lett. 71, 1645–1648 (1993).

    Article  ADS  Google Scholar 

  4. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  Google Scholar 

  5. Wang, Y. et al. Onset of the vortexlike Nernst signal above Tc in La2−xSrxCuO4 and Bi2Sr2−yLayCuO6 . Phys. Rev. B 64, 224519 (2001).

    Article  ADS  Google Scholar 

  6. Lu, Li et al. Diamagnetism and Cooper pairing above Tc in cuprates. Phys. Rev. B 81, 054510 (2010).

    Article  ADS  Google Scholar 

  7. Lee, J. et al. Spectroscopic fingerprint of phase-incoherent superconductivity in the underdoped Bi2Sr2CaCu2O8+δ . Science 325, 1099–1103 (2009).

    Article  ADS  Google Scholar 

  8. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ . Nature 398, 221–223 (1999).

    Article  ADS  Google Scholar 

  9. Bergeal, N. et al. Pairing fluctuations in the pseudogap state of copper-oxide superconductors probed by the Josephson effect. Nature Phys. 4, 608–611 (2008).

    Article  Google Scholar 

  10. Panagopoulos, C. & Xiang, T. Relationship between the superconducting energy gap and the critical temperature in high-Tc superconductors. Phys. Rev. Lett. 81, 2336–2339 (1998).

    Article  ADS  Google Scholar 

  11. Tanaka, K. et al. Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910–1913 (2006).

    Article  ADS  Google Scholar 

  12. Le Tacon, M. et al. Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates. Nature Phys. 2, 537–543 (2006).

    Article  ADS  Google Scholar 

  13. Kondo, T., Takeuchi, T., Kaminski, A., Tsuda, T. & Shin, S. Evidence for two energy scales in the superconducting state of optimally doped (Bi,Pb)2(Sr,La)2CuO6+δ . Phys. Rev. Lett. 98, 267004 (2007).

    Article  ADS  Google Scholar 

  14. Boyer, M. C. et al. Imaging the two gaps of the high-temperature superconductor Bi2Sr2CuO6+x . Nature Phys. 3, 802–806 (2007).

    Article  ADS  Google Scholar 

  15. Khasanov, R. et al. Evidence for competition between the superconducting and the pseudogap state in (BiPb)2(SrLa)2CuO6+x from muon-spin rotation experiments. Phys. Rev. Lett. 101, 227002 (2008).

    Article  ADS  Google Scholar 

  16. Kondo, T., Khasanov, R., Takeuchi, T., Schmalian, J. & Kaminski, A. Competition between the pseudogap and superconductivity in the high-Tc copper oxides. Nature 457, 296–300 (2009).

    Article  ADS  Google Scholar 

  17. Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996).

    Article  ADS  Google Scholar 

  18. Loeser, A. G. et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+x . Science 273, 325–329 (1996).

    Article  ADS  Google Scholar 

  19. Meng, J. et al. Motonic d-wavesupercondcuting gap in optimally-doped Bi2Sr1.6La0.4CuO6+δ superconductor by laser-based angle-resolved photoemission spectroscopy. Phys. Rev. B 79, 024514 (2009).

    Article  ADS  Google Scholar 

  20. Nakayama, K. et al. Evolution of a pairing-induced pseudogap from the superconducting gap of Bi2Sr2CuO6+δ . Phys. Rev. Lett. 102, 227006 (2009).

    Article  ADS  Google Scholar 

  21. Pan, S. H. et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 413, 282–285 (2001).

    Article  ADS  Google Scholar 

  22. Gomes, K. K. et al. Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Nature 447, 569–572 (2007).

    Article  ADS  Google Scholar 

  23. Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys. 4, 696–699 (2008).

    Article  ADS  Google Scholar 

  24. Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998).

    Article  ADS  Google Scholar 

  25. Wei, J. et al. Superconducting coherence peak in the electronic excitations of a single layer cuprate superconductor Bi2Sr1.6La0.4CuO6+δ . Phys. Rev. Lett. 101, 097005 (2008).

    Article  ADS  Google Scholar 

  26. Zheng, G., Kuhns, P. L., Reyes, A. P., Liang, B. & Lin, C. T. Critical point and the nature of the pseudogap of single-layered copper-oxide Bi2Sr2−xLaxCuO6+δ superconductors. Phys. Rev. Lett. 94, 047006 (2005).

    Article  ADS  Google Scholar 

  27. Tallon, J. L. et al. Fluctuations and Tc reduction in cuprate superconductors. Preprint at http://arxiv.org/abs/0908.4428 (2009).

  28. Wise, W. D. et al. Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor. Nature Phys. 5, 213–216 (2009).

    Article  ADS  Google Scholar 

  29. Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2 . Nature 430, 1001–1005 (2004).

    Article  ADS  Google Scholar 

  30. Chubukov, A. V. & Schmalian, J. Superconductivity due to massless boson exchange in the strong-coupling limit. Phys. Rev. B 72, 174520 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Millis, C. Varma and M. Norman for useful discussions. This work was supported by Basic Energy Sciences, US DOE. The Ames Laboratory is operated for the US DOE by Iowa State University under Contract No. W-7405-ENG-82. Work at Brookhaven is supported by the US DOE under Contract No. DE-AC02-98CH10886. J.S.W. and Z.J.X. are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Science.

Author information

Authors and Affiliations

Authors

Contributions

T.K. and A.K. designed the experiment. T.K., Y.H., T.T., J.S.W., Z.J.X. and G.G. grew the high-quality single crystals. T.K. and A.D.P. acquired the experimental data and T.K. carried out the data analysis. T.K., A.K. and J.S. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Takeshi Kondo or Adam Kaminski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 946 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, T., Hamaya, Y., Palczewski, A. et al. Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates. Nature Phys 7, 21–25 (2011). https://doi.org/10.1038/nphys1851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing