Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped Ba0.6K0.4Fe2As2

Abstract

The iron-pnictide superconductors have a layered structureformed by stacks of FeAs planes from which the superconductivity originates. Given the multiband and quasi three-dimensional1 (3D) electronic structure of these high-temperature superconductors, knowledge of the quasi-3D superconducting (SC) gap is essential for understanding the superconducting mechanism. By using the kz capability of angle-resolved photoemission, we completely determined the SC gap on all five Fermi surfaces (FSs) in three dimensions on Ba0.6K0.4Fe2As2 samples. We found a marked kz dispersion of the SC gap, which can derive only from interlayer pairing. Remarkably, the SC energy gaps can be described by a single 3D gap function with two energy scales characterizing the strengths of intralayer Δ1 and interlayer Δ2 pairing. The anisotropy ratio Δ1/Δ2, determined from the gap function, is close to the c-axis anisotropy ratio of the magnetic exchange coupling Jc/Ja b in the parent compound2. The ubiquitous gap function for all the 3D FSs reveals that pairing is short-ranged and strongly constrains the possible pairing force in the pnictides. A suitable candidate could arise from short-range antiferromagnetic fluctuations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Band dispersion of superconducting Ba0.6K0.4Fe2As2.
Figure 2: kz dispersion of quasiparticles and Fermi surface warping.
Figure 3: kz dependence of the superconducting gaps.
Figure 4: 3D superconducting gap function Δ (kx, ky, kz).

Similar content being viewed by others

References

  1. Yuan, H. Q. et al. Nearly isotropic superconductivity in (Ba,K)Fe2As2 . Nature 457, 565–568 (2009).

    Article  ADS  Google Scholar 

  2. Zhao, J. et al. Low energy spin waves and magnetic interactions in SrFe2As2 . Phys. Rev. Lett. 101, 167203 (2008).

    Article  ADS  Google Scholar 

  3. Ding, H. et al. Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 . Europhys. Lett. 83, 47001 (2008).

    Article  ADS  Google Scholar 

  4. Zhao, L. et al. Multiple nodeless superconducting gaps in (Ba0.6K0.4)Fe2As2 superconductor from angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 25, 4402–4405 (2008).

    ADS  Google Scholar 

  5. Wray, L. et al. Momentum-dependence of superconducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs in the high-Tc (Sr,Ba)1−x(K,Na)xFe2As2 superconductors. Phys. Rev. B 78, 184508 (2008).

    Article  ADS  Google Scholar 

  6. Nakayama, K. et al. Superconducting gap symmetry of Ba0.6K0.4Fe2As2 studies by angle-resolved photoemission spectroscopy. Europhys. Lett. 85, 67002 (2009).

    Article  ADS  Google Scholar 

  7. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx . Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  8. Kuroki, K. et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  9. Seo, K., Bernevig, B. A. & Hu, J-P. Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

    Article  ADS  Google Scholar 

  10. Wang, F. et al. Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based high-temperature superconductor. Phys. Rev. Lett. 102, 047005 (2009).

    Article  ADS  Google Scholar 

  11. Cvetkovic, V. & Tesanovic, Z. Multiband magnetism and superconductivity in Fe-based compounds. Europhys. Lett. 85, 37002 (2009).

    Article  ADS  Google Scholar 

  12. Fletcher, J. D. et al. Evidence for a nodal-line superconducting state in LaFePO. Phys. Rev. Lett. 102, 147001 (2009).

    Article  ADS  Google Scholar 

  13. Nakai, Y. et al. 31P and 75As NMR evidence for a residual density of states at zero energy in superconducting BaFe2(As0.67P0.33)2 . Phys. Rev. B 81, 020503(R) (2010).

    Article  ADS  Google Scholar 

  14. Reid, J-Ph. et al. Nodes in the gap structure of the iron arsenide superconductor Ba(Fe1−xCox)2As2 from c-axis heat transport measurements. Phys. Rev. B 82, 064501 (2010).

    Article  ADS  Google Scholar 

  15. Hüfner, S. Photoelectron Spectrsoscopy (Springer, 1995).

    Book  Google Scholar 

  16. Vilmercati, P. et al. Evidence for three-dimensional Fermi-surface topology of the layered electron-doped iron superconductor Ba(Fe1−xCox)2As2 . Phys. Rev. B 79, 220503(R) (2009).

    Article  ADS  Google Scholar 

  17. Liu, C. et al. Three- to two-dimensional transition of the electronic structure in CaFe2As2: A parent compound for an iron arsenic high-temperature superconductor. Phys. Rev. Lett. 102, 167004 (2009).

    Article  ADS  Google Scholar 

  18. Malaeb, W. et al. Three-dimensional electronic structure of superconducting iron pnictides observed by angle-resolved photoemission spectroscopy. J. Phys. Soc. Jpn. 78, 123706 (2009).

    Article  ADS  Google Scholar 

  19. Brouet, V. et al. Nesting between hole and electron pockets in Ba(Fe1−xCox)2As2 (x=0–0.3) observed with angle-resolved photoemission. Phys. Rev. B 80, 165115 (2009).

    Article  ADS  Google Scholar 

  20. Thirupathaiah, S. et al. Orbital character variation of the Fermi surface and doping dependent changes of the dimensionality in BaFe2−xCoxAs2 from angle-resolved photoemission spectroscopy. Phys. Rev. B 81, 104512 (2010).

    Article  ADS  Google Scholar 

  21. Singh, D. J. & Du, M. H. Density functional study of LaFeAsO1−xFx: A low carrier density superconductor near itinerant magnetism. Phys. Rev. Lett. 100, 237003 (2008).

    Article  ADS  Google Scholar 

  22. Ma, F. & Lu, Z-Y. Iron-based layered compound LaFeAsO is an antiferromagnetic semimetal. Phys. Rev. B 78, 033111 (2008).

    Article  ADS  Google Scholar 

  23. Xu, G., Zhang, H., Dai, X. & Fang, Z. Electron–hole asymmetry and quantum critical point in hole-doped BaFe2As2 . Europhys. Lett. 84, 67015 (2008).

    Article  ADS  Google Scholar 

  24. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  25. Graser, S. et al. Spin fluctuations and superconductivity in a three-dimensional tight-binding model for BaFe2As2 . Phys. Rev. B 81, 214503 (2010).

    Article  ADS  Google Scholar 

  26. Bulaeveskii, L. N. & Zyskin, M. V. Energy gap in layered superconductors. Phys. Rev. B 42, 10230 (1990).

    Article  ADS  Google Scholar 

  27. Si, Q. & Abrahams, E. Strong correlations and magnetic frustration in the high Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).

    Article  ADS  Google Scholar 

  28. Chen, G. F. et al. Transport and anisotropy in single-crystalline SrFe2As2 and A0.6K0.4Fe2As2 (A=Sr,Ba) superconductors. Phys. Rev. B 78, 224512 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank X. Dai, B. A. Bernevig and Z. Fang for valuable discussions. This work was supported by grants from the Chinese Academy of Sciences, NSF, the Ministry of Science and Technology of China, NSF, DOE of US, and the Sino-Swiss Science and Technology Cooperation.

Author information

Authors and Affiliations

Contributions

Y-M.X., Y-B.H., X-Y.C., E.R. and M.R. carried out the experiments. Y-M.X. and Y-B.H. analysed the data. H.D., Y-M.X., J-P.H. and Z.W. designed the experiments. Z.W., H.D., Y-M.X. and J-P.H. wrote the paper. G-F.C., P.Z., N-L.W., C-L.Z. and P-C.D. synthesized materials. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to H. Ding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, YM., Huang, YB., Cui, XY. et al. Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped Ba0.6K0.4Fe2As2. Nature Phys 7, 198–202 (2011). https://doi.org/10.1038/nphys1879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing