Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Universality beyond power laws and the average avalanche shape

Abstract

The study of critical phenomena and universal power laws has been one of the central advances in statistical mechanicsduring the second half of the past century, explaining traditional thermodynamic critical points1, avalanche behaviour near depinning transitions2,3 and a wide variety of other phenomena4. Scaling, universality and the renormalization group claim to predict all behaviour at long length and timescales asymptotically close to critical points. In most cases, the comparison between theory and experiments has been limited to the evaluation of the critical exponents of the power-law distributions predicted at criticality. An excellent area for investigating scaling phenomena is provided by systems exhibiting crackling noise, such as the Barkhausen effect in ferromagnetic materials5. Here we go beyond power-law scaling and focus on the average functional form of the noise emitted by avalanches—the average temporal avalanche shape4. By analysing thin permalloy films and improving the data analysis methods, our experiments become quantitatively consistent with our calculation for the multivariable scaling function in the presence of a demagnetizing field and finite field-ramp rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extracting average shapes from noisy data by Wiener deconvolution.
Figure 2: Multivariable scaling; experiment (symbols) versus ABBM mean-field theory (lines), at different sweep frequencies Ω.
Figure 3: Experiment and theory: average shapes and scaling.

Similar content being viewed by others

References

  1. Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  2. Fisher, D. S. Collective transport in random media: From superconductors to earthquakes. Phys. Rep. 301, 113–150 (1998).

    Article  ADS  Google Scholar 

  3. Doussal, P. L. & Wiese, K. J. Size distributions of shocks and static avalanches from the functional renormalization group. Phys. Rev. E 79, 051106 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  4. Sethna, J. P., Dahmen, K. & Myers, C. R. Crackling noise. Nature 410, 242–250 (2001).

    Article  ADS  Google Scholar 

  5. Durin, G. & Zapperi, S. in The Science of Hysteresis Vol. II (eds Bertotti, G. & Mayergoyz, I.) Ch. III, 181–267 (Academic, 2006).

    Book  Google Scholar 

  6. Mehta, A. P., Mills, A. C., Dahmen, K. A. & Sethna, J. P. Universal pulse shape scaling function and exponents: Critical test for avalanche models applied to Barkhausen noise. Phys. Rev. E 65, 046139 (2002).

    Article  ADS  Google Scholar 

  7. Laurson, L. & Alava, M. J. 1/f noise and avalanche scaling in plastic deformation. Phys. Rev. E 74, 066106 (2006).

    Article  ADS  Google Scholar 

  8. Chrzan, D. C. & Mills, M. J. Criticality in the plastic deformation of L12 intermetallic compounds. Phys. Rev. B 50, 30–42 (1994).

    Article  ADS  Google Scholar 

  9. Kuntz, M. C. & Sethna, J. P. Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models. Phys. Rev. B 62, 11699–11708 (2000).

    Article  ADS  Google Scholar 

  10. Colaiori, F. Exactly solvable model of avalanches dynamics for Barkhausen crackling noise. Adv. Phys. 57, 287–359 (2008).

    Article  ADS  Google Scholar 

  11. Durin, G. & Zapperi, S. On the power spectrum of magnetization noise. J. Magn. Magn. Mater. 242–245, 1085–1088 (2002).

    Article  ADS  Google Scholar 

  12. Zapperi, S., Castellano, C., Colaiori, F. & Durin, G. Signature of effective mass in crackling-noise asymmetry. Nature Phys. 1, 46–49 (2005).

    Article  ADS  Google Scholar 

  13. Alessandro, B., Beatrice, C., Bertotti, G. & Montorsi, A. Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I. Theory. J. Appl. Phys. 68, 2901–2907 (1990).

    Article  ADS  Google Scholar 

  14. Sethna, J. P. et al. Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations. Phys. Rev. Lett. 70, 3347–3350 (1993).

    Article  ADS  Google Scholar 

  15. Laurson, L., Illa, X. & Alava, M. J. The effect of thresholding on temporal avalanche statistics. J. Stat. Mech. P01019 (2009).

  16. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, 1988).

    MATH  Google Scholar 

  17. Durin, G. & Zapperi, S. Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys. Rev. Lett. 84, 4705–4708 (2000).

    Article  ADS  Google Scholar 

  18. Zapperi, S., Cizeau, P., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall: Avalanches, depinning transition, and the Barkhausen effect. Phys. Rev. B 58, 6353–6366 (1998).

    Article  ADS  Google Scholar 

  19. Zaiser, M. Scale invariance in plastic flow of crystalline solids. Adv. Phys. 55, 185–245 (2006).

    Article  ADS  Google Scholar 

  20. Fisher, D. S., Dahmen, K., Ramanathan, S. & Ben-Zion, Y. Statistics of earthquakes in simple models of heterogeneous faults. Phys. Rev. Lett. 78, 4885–4888 (1997).

    Article  ADS  Google Scholar 

  21. Ryu, K-S., Akinaga, H. & Shin, S-C. Tunable scaling behaviour observed in Barkhausen criticality of a ferromagnetic film. Nature Phys. 3, 547–550 (2007).

    Article  ADS  Google Scholar 

  22. Colaiori, F., Zapperi, S. & Durin, G. Shape of a Barkhausen pulse. J. Magn. Magn. Mater. 272–276, E533–E534 (2004).

    Article  Google Scholar 

  23. O’Brien, K. P. & Weissman, M. B. Statistical characterization of Barkhausen noise. Phys. Rev. E 50, 3446–3452 (1994).

    Article  ADS  Google Scholar 

  24. Bertotti, G. Hysteresis in Magnetism (Academic, 1998).

    Google Scholar 

  25. Baldassarri, A., Colaiori, F. & Castellano, C. Average shape of a fluctuation: Universality in excursions of stochastic processes. Phys. Rev. Lett. 90, 060601 (2003).

    Article  ADS  Google Scholar 

  26. Kampen, N. G. V. Stochastic Processes in Physics and Chemistry (Elsevier, 2007).

    MATH  Google Scholar 

  27. Bray, A. J. Random walks in logarithmic and power-law potentials, non-universal persistence, and vortex dynamics in the two-dimensional XY model. Phys. Rev. E 62, 103–112 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  28. Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, 1998).

    Google Scholar 

  29. Viegas, A. D. C. et al. Thickness dependence of the high-frequency magnetic permeability in amorphous Fe73.5Cu1Nb3Si13.5B9 thin films. J. Appl. Phys. 101, 033908 (2007).

    Article  ADS  Google Scholar 

  30. Santi, L. et al. Effects of thickness on the statistical properties of the Barkhausen noise in amorphous films. Physica B 384, 144–146 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Colaiori, K. Daniels and K. Dahmen for enlightening discussions. F.B. would like to thank M. Carara and L. F. Schelp for their experimental contributions and fruitful discussions. S.Z. acknowledges financial support from the short-term mobility programme of CNR. S.P. and J.P.S. were supported by DOE-BES. R.L.S. and F.B. were supported by CNPq, CAPES, FAPERJ and FAPERGS.

Author information

Authors and Affiliations

Authors

Contributions

F.B., G.D. and R.L.S. were responsible for the experiments. S.P., S.Z. and J.P.S. were responsible for the implementation of the Wiener filtering methods. S.P. was responsible for the theoretical analysis of the avalanche shapes, the simulations and wrote the original text of the manuscript.

Corresponding author

Correspondence to Stefanos Papanikolaou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papanikolaou, S., Bohn, F., Sommer, R. et al. Universality beyond power laws and the average avalanche shape. Nature Phys 7, 316–320 (2011). https://doi.org/10.1038/nphys1884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing