Abstract
Kerr black holes are among the most intriguing predictions of Einstein’s general relativity theory1,2. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted near them. We have found that this leads to a new relativistic effect that imprints orbital angular momentum on such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer3, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra4. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. As non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Chandrasekhar, S. The Mathematical Theory of Black Holes (Oxford Univ. Press, 1992).
Bozza, V. Gravitational lensing by black holes. Gen. Rel. Grav. 42, 2269–2300 (2010).
Ćadež, A. & Calvani, M. Relativistic emission lines from accretion disks around black holes. Mon. Not. R. Astron. Soc. 363, 177–182 (2005).
Torner, L., Torres, J. & Carrasco, S. Digital spiral imaging. Opt. Express 13, 873–881 (2005).
Dehnen, H. Gravitational Faraday-effect. Int. J. Theor. Phys. 7, 467–474 (1973).
Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).
Beckwith, K. & Done, C. Extreme gravitational lensing near rotating black holes. Mon. Not. R. Astron. Soc. 359, 1217–1228 (2005).
Carini, P., Long-Long, F., Miao, L. & Ruffini, R. Phase evolution of the photon in Kerr spacetime. Phys. Rev. D 46, 5407–5413 (1992).
Long-Long, F. & Wo-Lung, L. Gravitomagnetism and the Berry phase of photon in a rotating gravitational field. Int. J. Mod. Phys. D 10, 961–969 (2001).
Marucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).
Thidé, B. et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99, 087701 (2007).
Harwit, M. Photon orbital angular momentum in astrophysics. Astrophys. J. 597, 1266–1270 (2003).
Elias, N. M. II Photon orbital angular momentum in astronomy. Astron. Astrophys. 492, 883–922 (2008).
Tamburini, F., Anzolin, G., Bianchini, A. & Barbieri, C. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903 (2006).
Serabyn, E., Mawet, D. & Burruss, R. An image of an exoplanet separated by two diffraction beamwidths from a star. Nature 464, 1018–1020 (2010).
Anzolin, G., Tamburini, F., Bianchini, A., Umbriaco, G. & Barbieri, C. Optical vortices with star light. Astron. Astrophys. 488, 1159–1165 (2008).
Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. Quantum Electrodynamics 2nd edn,Vol. 4 (Butterworth-Heinemann, 1982).
Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).
Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S. & Courtial, J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).
Tamburini, F. & Vicino, D. Photon wave function: A covariant formulation and equivalence with QED. Phys. Rev. A 78, 052116 (2008).
Falcke, H., Melia, F. & Agol, E. Viewing the shadow of the black hole at the Galactic Center. Astrophys. J. 528, L13–L16 (2000).
Genzel, R. et al. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature 425, 934–937 (2003).
Aschenbach, B., Grosso, N., Porquet, D. & Predehl, P. X-ray flares reveal mass and angular momentum of the Galactic Center black hole. Astron. Astrophys. 417, 71–78 (2004).
Broderick, A. E., Fish, V. L., Doeleman, S. S. & Loeb, A. Estimating the parameters of Sagittarius A*’s accretion flow via millimeter VLBI. Astrophys. J. 697, 45–54 (2009).
Tamburini, F., Sponselli, A., Thidé, B. & Mendonça, J. T. Photon orbital angular momentum and mass in a plasma vortex. Europhys. Lett. 90, 45001 (2010).
Darwin, C. The gravity field of a particle. Proc. R. Soc. Lond. 249, 180–194 (1959).
Su, F. S. & Mallett, R. L. The effect of the Kerr metric on the plane of polarization of an electromagnetic wave. Astrophys. J. 238, 1111–1125 (1980).
Mendonça, J. T. & Thidé, B. Neutrino orbital angular momentum in a plasma vortex. Europhys. Lett. 84, 41001 (2008).
Acknowledgements
The authors thank J. P. Torres, M. Calvani, A. Čadež and M. Berry for helpful comments and suggestions. F.T. gratefully acknowledges the financial support from the CARIPARO Foundation within the 2006 Program of Excellence and the kind hospitality of Uppsala University/Swedish Institute of Space Physics and ICFO during the writing of the manuscript. B.T. gratefully acknowledges financial support from the Swedish Research Council (VR) and the hospitality of the Nordic Institute for Theoretical Physics (NORDITA), the University of Padova, and the Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Vienna, where parts of this work were carried out.
Author information
Authors and Affiliations
Contributions
F.T., B.T. and G.M-T. developed the model. F.T. carried out the numerical simulations. G.A. calculated and plotted the OAM spectra. F.T. and B.T. wrote the manuscript. All authors discussed and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 712 kb)
Rights and permissions
About this article
Cite this article
Tamburini, F., Thidé, B., Molina-Terriza, G. et al. Twisting of light around rotating black holes. Nature Phys 7, 195–197 (2011). https://doi.org/10.1038/nphys1907
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1907
This article is cited by
-
Observables for the Effect of Gravity on Electromagnetic Polarization
International Journal of Theoretical Physics (2024)
-
Orbital angular momentum detection device for vortex microwave photons
Communications Engineering (2023)
-
On-chip generation of Bessel–Gaussian beam via concentrically distributed grating arrays for long-range sensing
Light: Science & Applications (2023)
-
Determination of the Hubble Constant from the Cosmic Microwave Background with Allowance for the Photon Angular Momentum
Russian Physics Journal (2022)
-
Production of polarized particle beams via ultraintense laser pulses
Reviews of Modern Plasma Physics (2022)


