Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Real-time observation of laser-driven electron acceleration

This article has been updated

Abstract

Electron acceleration by laser-driven plasma waves1,2 is capableof producing ultra-relativistic, quasi-monoenergetic electron bunches3,4,5 with orders of magnitude higher accelerating gradients and much shorter electron pulses than state-of-the-art radio-frequency accelerators. Recent developments have shown peak energies reaching into the GeV range6 and improved stability and control over the energy spectrum and charge7. Future applications, such as the development of laboratory X-ray sources with unprecedented peak brilliance8,9 or ultrafast time-resolved measurements10 critically rely on a temporal characterization of the acceleration process and the electron bunch. Here, we report the first real-time observation of the accelerated electron pulse and the accelerating plasma wave. Our time-resolved study allows a single-shot measurement of the 5.8−2.1+1.9 fs electron bunch full-width at half-maximum (2.5−0.9+0.8 fs root mean square) as well as the plasma wave with a density-dependent period of 12–22 fs and reveals the evolution of the bunch, its position in the surrounding plasma wave and the wake dynamics. The results afford promise for brilliant, sub-ångström-wavelength ultrafast electron and photon sources for diffraction imaging with atomic resolution in space and time11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Particle-in-cell simulation results.
Figure 3: Visualization of the electron bunch and the plasma wave.
Figure 4: Evolution of the electron bunch and the plasma wave during the acceleration process.

Similar content being viewed by others

Change history

  • 21 March 2011

    In the version of this Letter originally published, the description of panels c–i in the caption for Fig. 4 was incomplete. This error has now been corrected in all versions of the Letter.

References

  1. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    Article  ADS  Google Scholar 

  2. Pukhov, A. & Meyer-ter-Vehn, J. Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).

    Article  ADS  Google Scholar 

  3. Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535–538 (2004).

    Article  ADS  Google Scholar 

  4. Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  5. Faure, J. et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    Article  ADS  Google Scholar 

  6. Leemans, W. P. et al. GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696–699 (2006).

    Article  ADS  Google Scholar 

  7. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    Article  ADS  Google Scholar 

  8. Catravas, P., Esarey, E. & Leemans, W. P. Femtosecond X-rays from Thomson scattering using laser wakefield accelerators. Meas. Sci. Technol. 12, 1828–1834 (2001).

    Article  ADS  Google Scholar 

  9. Fuchs, M. et al. Laser-driven soft-X-ray undulator source. Nature Phys. 5, 826–829 (2009).

    Article  ADS  Google Scholar 

  10. Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).

    Article  ADS  Google Scholar 

  11. Ivanov, M. & Krausz, F. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  12. Bulanov, S. V., Pegoraro, F., Pukhov, A. M. & Sakharov, A. S. Transverse-wake wave breaking. Phys. Rev. Lett. 78, 4205–4208 (1997).

    Article  ADS  Google Scholar 

  13. Lu, W., Huang, C., Zhou, M., Mori, W. B. & Katsouleas, T. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006).

    Article  ADS  Google Scholar 

  14. Thomas, A. G. R. et al. Measurements of wave-breaking radiation from a laser-wakefield accelerator. Phys. Rev. Lett. 98, 054802 (2007).

    Article  ADS  Google Scholar 

  15. Van Tilborg, J. et al. Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96, 014801 (2006).

    Article  ADS  Google Scholar 

  16. Ohkubo, T. et al. Temporal characteristics of monoenergetic electron beams generated by the laser wakefield acceleration. Phys. Rev. Spec. Top. Accel. Beams 10, 031301 (2007).

    Article  ADS  Google Scholar 

  17. Van Tilborg, J., Tóth, Cs., Matlis, N. H., Plateau, G. R. & Leemans, W. P. Single-shot measurement of the spectral envelope of broad-bandwidth terahertz pulses from femtosecond electron bunches. Opt. Lett. 33, 1186–1188 (2008).

    Article  ADS  Google Scholar 

  18. Debus, A. D. et al. Electron bunch length measurements from laser-accelerated electrons using single-shot THz time-domain interferometry. Phys. Rev. Lett. 104, 084802 (2010).

    Article  ADS  Google Scholar 

  19. Matlis, N. H. et al. Snapshots of laser wakefields. Nature Phys. 2, 749–753 (2006).

    Article  ADS  Google Scholar 

  20. Dong, P. et al. Formation of optical bullets in laser-driven plasma bubble accelerators. Phys. Rev. Lett. 104, 134801 (2010).

    Article  ADS  Google Scholar 

  21. Stamper, J. A. & Ripin, B. H. Faraday-rotation measurements of megagauss magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 34, 138–141 (1975).

    Article  ADS  Google Scholar 

  22. Kaluza, M. C. et al. Measurement of magnetic-field structures in a laser-wakefield accelerator. Phys. Rev. Lett. 105, 115002 (2010).

    Article  ADS  Google Scholar 

  23. Settles, G. S. Schlieren and Shadowgraph Techniques (Springer, 2001).

    Book  Google Scholar 

  24. Geissler, M., Schreiber, J. & Meyer-ter-Vehn, J. Bubble acceleration of electrons with few-cycle laser pulses. New J. Phys. 8, 186 (2006).

    Article  ADS  Google Scholar 

  25. Herrmann, D. et al. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt. Lett. 34, 2459–2461 (2009).

    Article  ADS  Google Scholar 

  26. Rechatin, C. et al. Observation of beam loading in a laser-plasma accelerator. Phys. Rev. Lett. 103, 194804 (2009).

    Article  ADS  Google Scholar 

  27. Matsuoka, T. et al. Stimulated Raman side scattering in laser wakefield acceleration. Phys. Rev. Lett. 105, 034801 (2010).

    Article  ADS  Google Scholar 

  28. Hsieh, C-T. et al. Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator. Phys. Rev. Lett. 96, 095001 (2006).

    Article  ADS  Google Scholar 

  29. Mangles, S. P. D. et al. Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. Phys. Rev. Lett. 96, 215001 (2006).

    Article  ADS  Google Scholar 

  30. Schmid, K. et al. Few-cycle laser-driven electron acceleration. Phys. Rev. Lett. 102, 124801 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Geissler for providing us with the ILLUMINATION code to perform the PIC simulations. This work is supported by DFG-Project Transregio TR18, by the Association EURATOM, Max-Planck-Institut für Plasmaphysik, by the Munich Centre for Advanced Photonics (MAP), by Laserlab-Europe/Labtech FP7 contract number 228334 and by the German Ministry of Education and Research (BMBF) under contract 03ZIK052. C.M.S.S. acknowledges the support of the Alexander von Humboldt Foundation. J.M.M. acknowledges the support of the Alexander von Humboldt Foundation and the Russian Foundation for Basic Research (RFBR), grant numbers 08-02-01245-a and 08-02-01137-a.

Author information

Authors and Affiliations

Authors

Contributions

A.B., M.N., K.S., C.M.S.S., A.S., M.C.K. and L.V. designed and carried out the experiments. A.B. and M.N. did the main data analysis. A.B. and J.M.M. performed the simulations. F.K., M.C.K. and L.V. provided overall guidance to the project. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Alexander Buck or Laszlo Veisz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 169 kb)

Supplementary Information

Supplementary Information (MOV 3386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, A., Nicolai, M., Schmid, K. et al. Real-time observation of laser-driven electron acceleration. Nature Phys 7, 543–548 (2011). https://doi.org/10.1038/nphys1942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing