Abstract
Quantum entanglement1,2 plays a vital role in many quantum-information and communication tasks3. Entangled states of higher-dimensional systems are of great interest owing to the extended possibilities they provide. For example, they enable the realization of new types of quantum information scheme that can offer higher-information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems (see ref. 4 and references therein). Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher-dimensional entangled systems are used5. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalized to d-dimensional systems6 up to d=12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum7, generated through spontaneous parametric down-conversion8,9, and manipulated using computer-controlled holograms.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



with ℓs,ℓi=−5,…,+5.
Similar content being viewed by others
References
Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).
Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23 807–812; 823–828; 844–849 (1935).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Durt, T., Kaszlikowski, D., Chen, J-L. & Kwek, L. C. Security of quantum key distributions with entangled qudits. Phys. Rev. A 69, 032313 (2004).
Vértesi, T., Pironio, S. & Brunner, N. Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010).
Collins, D., Gisin, N-l., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
Walborn, S. P., de Oliveira, A. N., Thebaldi, R. S. & Monken, C. H. Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion. Phys. Rev. A 69, 023811 (2004).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
You-Bang, Z., Qun-Yong, Z., Yu-Wu, W. & Peng-Cheng, M. Schemes for teleportation of an unknown single-qubit quantum state by using an arbitrary high-dimensional entangled state. Chinese Phys. Lett. 27, 10307–10310 (2010).
Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992).
Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).
Hillery, M., Bužek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).
Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).
Yuan, Z-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).
Gao, W-B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nature Phys. 6, 331–335 (2010).
Vaziri, A., Weihs, G. & Zeilinger, A. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89, 240401 (2002).
Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982).
Leach, J. et al. Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. Opt. Exp. 17, 8287–8293 (2009).
Jack, B. et al. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces. Phys. Rev. A 81, 043844 (2010).
Jack, B. et al. Precise quantum tomography of photon pairs with entangled orbital angular momentum. New J. Phys. 11, 103024 (2009).
Pors, J. B. et al. Shannon dimensionality of quantum channels and its application to photon entanglement. Phys. Rev. Lett. 101, 120502 (2008).
Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G. & Zeilinger, A. Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006).
Durt, T., Kaszlikowski, D. & Żukowski, M. Violations of local realism with quantum systems described by N-dimensional Hilbert spaces up to N=16. Phys. Rev. A 64, 024101 (2001).
Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996).
Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Vortex knots in light. New J. Phys. 7, 55 (2005).
Torres, J. P., Alexandrescu, A. & Torner, L. Quantum spiral bandwidth of entangled two-photon states. Phys. Rev. A 68, 050301 (2003).
Law, C. K. & Eberly, J. H. Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett. 92, 127903 (2004).
Vaziri, A., Pan, J-W., Jennewein, T., Weihs, G. & Zeilinger, A. Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91, 227902 (2003).
Acknowledgements
We acknowledge suggestions from S. M. Barnett. This work was funded by the Engineering and Physical Sciences Research Council (EPSRC). A.C.D. acknowledges funding support from the Scottish Universities Physics Alliance (SUPA).
Author information
Authors and Affiliations
Contributions
A.C.D. and E.A. devised the concept of the experiment. E.A. supervised the theoretical aspects of the project. G.S.B. and M.J.P. advised on aspects of experimental design. A.C.D. and J.L. carried out the experiment. A.C.D. and E.A. wrote the paper with contributions from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 773 kb)
Rights and permissions
About this article
Cite this article
Dada, A., Leach, J., Buller, G. et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nature Phys 7, 677–680 (2011). https://doi.org/10.1038/nphys1996
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1996
This article is cited by
-
Integrated optical vortex microcomb
Nature Photonics (2024)
-
Preparation of maximally-entangled states with multiple cat-state qutrits in circuit QED
Frontiers of Physics (2024)
-
Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion
Nature Communications (2023)
-
Interferometric imaging of amplitude and phase of spatial biphoton states
Nature Photonics (2023)
-
On-chip parallel processing of quantum frequency comb
npj Quantum Information (2023)


