Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene

Abstract

The physics of Dirac fermions in condensed-matter systems has received extraordinary attention following the discoveries of two new types of quantum Hall effect in single-layer and bilayer graphene1,2,3. The electronic structure of trilayer graphene (TLG) has been predicted to consist of both massless single-layer-graphene-like and massive bilayer-graphene-like Dirac subbands4,5,6,7, which should result in new types of mesoscopic and quantum Hall phenomena. However, the low mobility exhibited by TLG devices on conventional substrates has led to few experimental studies8,9. Here we investigate electronic transport in high-mobility (>100,000 cm2 V−1 s−1) TLG devices on hexagonal boron nitride, which enables the observation of Shubnikov–de Haas oscillations and an unconventional quantum Hall effect. The massless and massive characters of the TLG subbands lead to a set of Landau-level crossings, whose magnetic-field and filling-factor coordinates enable the determination of the Slonczewski–Weiss–McClure (SWMcC) parameters10 used to describe the peculiar electronic structure of TLG. Moreover, at high magnetic fields, the degenerate crossing points split into manifolds, indicating the existence of broken-symmetry quantum Hall states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic properties of Bernal-stacked TLG at zero magnetic field.
Figure 2: SdHOs and Landau fan diagram in TLG.
Figure 3: LL crossings between broken-symmetry states.
Figure 4: Unconventional QHE in TLG.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  2. Zhang, Y., Tan, Y-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  3. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

    Article  ADS  Google Scholar 

  4. Lu, C. L., Chang, C. P., Huang, Y. C., Chen, R. B. & Lin, M. L. Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Phys. Rev. B 73, 144427 (2006).

    Article  ADS  Google Scholar 

  5. Guinea, F., Neto, A. H. C. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006).

    Article  ADS  Google Scholar 

  6. Latil, S. & Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006).

    Article  ADS  Google Scholar 

  7. Partoens, B. & Peeters, F. M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 74, 075404 (2006).

    Article  ADS  Google Scholar 

  8. Craciun, M. F. et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nature Nanotech. 4, 383–388 (2009).

    Article  ADS  Google Scholar 

  9. Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).

    Article  ADS  Google Scholar 

  10. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    Article  ADS  Google Scholar 

  11. Li, G. & Andrei, E. Y. Observation of Landau levels of Dirac fermions in graphite. Nature Phys. 3, 623–627 (2007).

    Article  ADS  Google Scholar 

  12. Niimi, Y., Kambara, H. & Fukuyama, H. Localized distributions of quasi-two-dimensional electronic states near defects artificially created at graphite surfaces in magnetic fields. Phys. Rev. Lett. 102, 026803 (2009).

    Article  ADS  Google Scholar 

  13. Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009).

    Article  ADS  Google Scholar 

  14. McCann, E. & Fal’ko, V. L. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Article  ADS  Google Scholar 

  15. Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–Bn solvent. J. Cryst. Growth 303, 525–529 (2007).

    Article  ADS  Google Scholar 

  16. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  17. Bao, W. et al. Magnetoconductance oscillations and evidence for fractional quantum Hall states in suspended bilayer and trilayer graphene. Phys. Rev. Lett. 105, 246601 (2010).

    Article  ADS  Google Scholar 

  18. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nano. 3, 491–495 (2008).

    Article  ADS  Google Scholar 

  19. Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L. & Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008).

    Article  ADS  Google Scholar 

  20. Piazza, V. et al. First-order phase transitions in a quantum Hall ferromagnet. Nature 402, 638–641 (1999).

    Article  ADS  Google Scholar 

  21. Zhang, X. C., Faulhaber, D. R. & Jiang, H. W. Multiple phases with the same quantized Hall conductance in a two-subband system. Phys. Rev. Lett. 95, 216801 (2005).

    Article  ADS  Google Scholar 

  22. Koshino, M. & McCann, E. Trigonal warping and Berry’s phase N π in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).

    Article  ADS  Google Scholar 

  23. Koshino, M. & McCann, E. Landau level spectra and the quantum Hall effect of multilayer graphene. Phys. Rev. B 83, 165443 (2011).

    Article  ADS  Google Scholar 

  24. Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    Article  ADS  Google Scholar 

  25. Checkelsky, J. G., Li, L. & Ong, N. P. Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100, 206801 (2008).

    Article  ADS  Google Scholar 

  26. Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Phys. 5, 889–893 (2009).

    Article  ADS  Google Scholar 

  27. Zhao, Y., Cadden-Zimansky, P., Jiang, Z. & Kim, P. Symmetry breaking in the zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2009).

    Article  ADS  Google Scholar 

  28. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article  ADS  Google Scholar 

  29. Song, Y. J. et al. High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467, 185–189 (2010).

    Article  ADS  Google Scholar 

  30. Jungwirth, T., Shukla, S. P., Smrčka, L., Shayegan, M. & MacDonald, A. H. Magnetic anisotropy in quantum Hall ferromagnets. Phys. Rev. Lett. 81, 2328–2331 (1998).

    Article  ADS  Google Scholar 

  31. Ezawa, M. Supersymmetry and unconventional quantum Hall effect in monolayer, bilayer and trilayer graphene. Physica E 40, 269–272 (2007).

    Article  ADS  Google Scholar 

  32. Koshino, M. & McCann, E. Parity and valley degeneracy in multilayer graphene. Phys. Rev. B 81, 115315 (2010).

    Article  ADS  Google Scholar 

  33. Moser, J., Barreiro, A. & Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Koshino and E. McCann for discussions and sharing their preliminary work on LLs in Bernal-stacked TLG. We also thank L. Levitov and P. Kim for discussions, A. F. Young for discussions and experimental help on hBN, and J. D. Sanchez-Yamagishi and J. Wang for experimental help. We acknowledge financial support from the Office of Naval Research GATE MURI and a National Science Foundation Career Award. This research has made use of the NSF-funded MIT CMSE and Harvard CNS facilities.

Author information

Authors and Affiliations

Authors

Contributions

T. Taychatanapat fabricated the samples and carried out the experiments. K.W. and T. Taniguchi synthesized the hBN samples. T. Taychatanapat and P.J-H. carried out the data analysis and co-wrote the paper.

Corresponding author

Correspondence to Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8714 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taychatanapat, T., Watanabe, K., Taniguchi, T. et al. Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene. Nature Phys 7, 621–625 (2011). https://doi.org/10.1038/nphys2008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing