Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamical d-wave condensation of exciton–polaritons in a two-dimensional square-lattice potential

Abstract

Macroscopic order appears as the collective behaviour of many interacting particles. Prime examples are superfluidity in helium1, atomic Bose–Einstein condensation2, s-wave3 and d -wave superconductivity4 and metal–insulator transitions5. Such physical properties are tightly linked to spin and charge degrees of freedom and are greatly enriched by orbital structures6. Moreover, high-orbital states of bosons exhibit exotic orders distinct from the orders with real-valued bosonic ground states7. Recently, a wide range of related phenomena have been studied using atom condensates in optical lattices8,9,10, but the experimental observation of high-orbital orders has been limited to momentum space11,12. Here we establish microcavity exciton–polariton condensates as a promising alternative for exploring high-orbital orders. We observe the formation of d -orbital condensates on a square lattice and characterize their coherence properties in terms of population distributions both in real and momentum space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-dimensional square-lattice device, band structure and Brillouin zones.
Figure 2: Lower polariton distribution in reciprocal lattice space.
Figure 3: Theoretical near-field and far-field patterns in a strong potential.
Figure 4: Energy-momentum dispersion characteristics.
Figure 5: Energy-resolved spatial characteristics.

Similar content being viewed by others

References

  1. Leggett, A. J. Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  2. Pitaevskii, L. P. & Stringari, S. Bose–Einstein Condensation (Clarendon, 2003).

    MATH  Google Scholar 

  3. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1996).

    Google Scholar 

  4. Van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—evidence for d x 2 − y 2 symmetry. Rev. Mod. Phys. 67, 515–535 (1995).

    Article  ADS  Google Scholar 

  5. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  Google Scholar 

  6. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article  ADS  Google Scholar 

  7. Wu, C. Unconventional Bose–Einstein condensations beyond the ‘no-node’ theorem. Mod. Phys. Lett. B 23, 1–24 (2009).

    Article  ADS  Google Scholar 

  8. Greiner, M. et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  9. Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

    Article  ADS  Google Scholar 

  10. Chin, J. K. et al. Evidence for superfluidity of ultracold fermions in an optical lattice. Nature 443, 961–964 (2006).

    Article  ADS  Google Scholar 

  11. Müller, T., Fölling, S., Widera, A. & Bloch, I. State preparation and dynamics of ultracold atoms in higher lattice orbitals. Phys. Rev. Lett. 99, 200405 (2007).

    Article  ADS  Google Scholar 

  12. Köhl, M., Moritz, H., Stöferle, T., Günter, K. & Esslinger, T. Fermionic atoms in a three dimensional optical lattice: Observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett. 94, 080403 (2005).

    Article  ADS  Google Scholar 

  13. Kavokin, A. & Malpuech, G. Cavity Polaritons (Academic, 2003).

    Google Scholar 

  14. Deng, H. et al. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  ADS  Google Scholar 

  15. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  16. Balili, R. et al. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  17. Bajoni, D. et al. Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).

    Article  ADS  Google Scholar 

  18. Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–533 (2007).

    Article  ADS  Google Scholar 

  19. Salamon, M. B. & Jaime, M. The physics of manganites: Structure and transport. Rev. Mod. Phys 73, 583–628 (2001).

    Article  ADS  Google Scholar 

  20. Ishida, K., Nakai, Y. & Hosono, H. To what extent iron-pnictide new superconductors have been clarified: A progress report. J. Phys. Soc. Jpn 78, 062001 (2009).

    Article  ADS  Google Scholar 

  21. Mazin, I. I. & Schmalian, J. Pairing symmetry and pairing state in ferropnictides: Theoretical overview. Physica C 469, 614–627 (2009).

    Article  ADS  Google Scholar 

  22. Feynman, R. P. Statistical Mechanics: A Set of Lectures (Addison-Wesley, 1972).

    MATH  Google Scholar 

  23. Wirth, G., Ölschläger, M & Hemmerich, A. Evidence for orbital superfluidity in the P -band of a bipartite optical square lattice. Nature Phys. 7, 147–153 (2010).

    Article  ADS  Google Scholar 

  24. Sanvitto, D. et al. Exciton–polariton condensation in a natural two-dimensional trap. Phys. Rev. B 80, 045301 (2009).

    Article  ADS  Google Scholar 

  25. Maragkou, M. et al. Spontaneous nonground state polariton condensation in pillar microcavities. Phys. Rev. B 81, 081307 (2010).

    Article  ADS  Google Scholar 

  26. Kim, N. Y. et al. GaAs microcavity exciton–polaritons in a trap. Phys. Status. Solidi B 245, 1076–1079 (2008).

    Article  ADS  Google Scholar 

  27. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Brooks Cole, 1989).

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge Special Coordination Funds for Promoting Science and Technology in Japan, Navy/SPAWAR Grant N66001-09-1-2024, MEXT, the Japan Society for the Promotion of Science (JSPS) through its Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), and State of Bavaria. C.W. is supported by the NSF under grant no. DMR-0804775.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and N.Y.K. conceived this study. A.L. and S.H. grew the wafer. K.K processed the device. N.Y.K. built an optical set-up, and N.Y.K., K.K. and N.M. carried out experiments. N.Y.K. and Y.Y. analysed experimental data and C.W. carried out band-structure calculations. N.Y.K. and Y.Y. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Na Young Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, N., Kusudo, K., Wu, C. et al. Dynamical d-wave condensation of exciton–polaritons in a two-dimensional square-lattice potential. Nature Phys 7, 681–686 (2011). https://doi.org/10.1038/nphys2012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing