Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements

Abstract

Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures1,2. Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo3 has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality4. This method has been applied to simulations5,6 and experiments7,8 but never validated experimentally. We tested it using force–extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions9. We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical-trapping measurements.
Figure 2: FECs.
Figure 3: Free-energy-landscape reconstruction at zero force.
Figure 4: Comparison of equilibrium and non-equilibrium reconstructions.
Figure 5: Riboswitch-aptamer landscape reconstruction.

Similar content being viewed by others

References

  1. Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997).

    Article  ADS  Google Scholar 

  2. Bryngelson, J. D. & Wolynes, P. G. Spin glasses and the statistical mechanics of protein folding. Proc. Natl Acad. Sci. USA 84, 7524–7528 (1987).

    Article  ADS  Google Scholar 

  3. Hummer, G. & Szabo, A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl Acad. Sci. USA 98, 3658–3661 (2001).

    Article  ADS  Google Scholar 

  4. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997).

    Article  ADS  Google Scholar 

  5. Park, S. & Schulten, K. Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys. 120, 5946–5961 (2004).

    Article  ADS  Google Scholar 

  6. Minh, D. D. L. Free-energy reconstruction from experiments performed under different biasing programs. Phys. Rev. E 74, 061120 (2006).

    Article  ADS  Google Scholar 

  7. Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. J. & Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002).

    Article  ADS  Google Scholar 

  8. Harris, N. C., Song, Y. & Kiang, C-H. Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski’s equality. Phys. Rev. Lett. 99, 068101 (2007).

    Article  ADS  Google Scholar 

  9. Woodside, M. T. et al. Direct measurement of the full sequence-dependent folding landscape of a nucleic acid. Science 314, 1001–1004 (2006).

    Article  ADS  Google Scholar 

  10. Petrey, D. & Honig, B. Protein structure prediction: Inroads to biology. Mol. Cell. 20, 811–819 (2005).

    Article  Google Scholar 

  11. Bradley, P., Misura, K. M. S. & Baker, D. Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871 (2005).

    Article  ADS  Google Scholar 

  12. Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (Freeman, 1999).

    Google Scholar 

  13. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  ADS  Google Scholar 

  14. Hyeon, C. & Thirumalai, D. Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Proc. Natl Acad. Sci. USA 100, 10249–10253 (2003).

    Article  ADS  Google Scholar 

  15. Kim, P. S. & Baldwin, R. L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–660 (1990).

    Article  ADS  Google Scholar 

  16. Daggett, V. & Fersht, A. R. Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28, 18–25 (2003).

    Article  Google Scholar 

  17. Buchner, J. & Kiefhaber, T. Protein Folding Handbook (Wiley-VCH, 2005).

    Book  Google Scholar 

  18. Woodside, M. T., García-García, C. & Block, S. M. Folding and unfoldingsingle RNA molecules under tension. Curr. Opin. Chem. Biol. 12, 640–646 (2008).

    Article  Google Scholar 

  19. Lang, M. J., Asbury, C. L., Shaevitz, J. W. & Block, S. M. An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83, 491–501 (2002).

    Article  ADS  Google Scholar 

  20. Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A. & Block, S. M. Passive all-optical force clamp for high-resolution laser trapping. Phys. Rev. Lett. 95, 208102 (2005).

    Article  ADS  Google Scholar 

  21. Gebhardt, J. C. M., Bornschlögl, T. & Rief, M. Full distance-resolved folding energy landscape of one single protein molecule. Proc. Natl Acad. Sci. USA 107, 2013–2018 (2010).

    Article  ADS  Google Scholar 

  22. Crooks, G. E. Entropy production fluctuation theorem and thenonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999).

    Article  ADS  Google Scholar 

  23. Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).

    Article  ADS  Google Scholar 

  24. Ritort, F. Nonequilibrium fluctuations in small systems: From physics to biology. Adv. Chem. Phys. 137, 31–123 (2008).

    Google Scholar 

  25. Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).

    Article  ADS  Google Scholar 

  26. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–798 (1996).

    Article  ADS  Google Scholar 

  27. Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. J. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).

    Article  ADS  Google Scholar 

  28. Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. J. Biophys. 72, 1335–1346 (1997).

    Article  Google Scholar 

  29. Mossa, A., Lorenzo, S. d., Huguet, J. M. & Ritort, F. Measurement of work in single-molecule pulling experiments. J. Chem. Phys. 130, 234116 (2009).

    Article  ADS  Google Scholar 

  30. Greenleaf, W. J., Frieda, K. L., Foster, D. A. N., Woodside, M. T. & Block, S. M. Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630–633 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Szabo, G. Hummer and D. Minh for discussion and comments. This work was supported by the National Institute for Nanotechnology, Canadian Institutes of Health Research grant reference number NHG 91374, PrioNet Canada and the nanoWorks program of Alberta Innovates Technology Solutions.

Author information

Authors and Affiliations

Authors

Contributions

M.T.W. designed the experiment. F.W. contributed materials. K.N., H.Y. and M.T.W. made the measurements. A.N.G., A.V. and K.N. analysed the data. A.N.G., A.V. and M.T.W. wrote the paper.

Corresponding author

Correspondence to Michael T. Woodside.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 262 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Vincent, A., Neupane, K. et al. Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements. Nature Phys 7, 631–634 (2011). https://doi.org/10.1038/nphys2022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing