Abstract
The uncertainty principle, which bounds the uncertainties involved in obtaining precise outcomes for two complementary variables defining a quantum particle, is a crucial aspect in quantum mechanics. Recently, the uncertainty principle in terms of entropy has been extended to the case involving quantum entanglement1. With previously obtained quantum information for the particle of interest, the outcomes of both non-commuting observables can be predicted precisely, which greatly generalizes the uncertainty relation. Here, we experimentally investigated the entanglement-assisted entropic uncertainty principle for an entirely optical set-up. The uncertainty is shown to be near zero in the presence of quasi-maximal entanglement. The new uncertainty relation is further used to witness entanglement. The verified entropic uncertainty relation provides an intriguing perspective in that it implies the uncertainty principle is not only observable-dependent but is also observer-dependent2.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Berta, M., Christandl, M., Colbeck, R., Renes, J. M. & Renner, R. The uncertainty principle in the presence of quantum memory. Nature Phys. 6, 659–662 (2010).
Winter, A. Coping with uncertainty. Nature Phys. 6, 640–641 (2010).
Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927).
Robertson, H. P. The uncertainty principle. Phys. Rev. 34, 163–164 (1929).
Biłynicki-Birula, I. & Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 44, 129–132 (1975).
Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983).
Kraus, K. Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987).
Maassen, H. & Uffink, J. B. M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988).
Einstein, A., Podolsky, B. & Rosen, N. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).
Popper, K. R. Zur Kritik der Ungenauigkeitsrelationen. Naturwissenschaften 22, 807–808 (1934).
Kim, Y. H. & Shih, Y. Experimental realization of Popper’s experiment: Violation of the uncertainty principle? Found. Phys. 29, 1849–1861 (1999).
Reid, M. D. & Drummond, P. D. Quantum correlations of phase in nondegenerate parametric oscillation. Phys. Rev. Lett. 60, 2731–2733 (1988).
Reid, M. D. Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913–923 (1989).
Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous-variables. Phys. Rev. Lett. 68, 3663–3666 (1992).
Hofmann, H. F. & Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A. 68, 032103 (2003).
Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).
Bowen, W. P., Schnabel, R., Lam, P. K. & Ralph, T. C. Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003).
Renes, J. M. & Boileau, J. C. Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009).
Devetak, I. & Winter, A. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A 461, 207–235 (2005).
Fano, R. Transimission of Information: A Statistical Theory of Communications (Cambridge, Mass., M.I.T. Press, 1961).
Kwiat, P. G., Waks, E., White, A. G., Appelbaum, I. & Eberhard, P. H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999).
Xu, J-S., Li, C-F. & Guo, G-C. Generation of a high-visibility four-photon entangled state and realization of a four-party quantum communication complexity scenario. Phys. Rev. A 74, 052311 (2006).
Aiello, A., Puentes, G., Voigt, D. & Woerdman, J. P. Maximally entangled mixed-state generation via local operations. Phys. Rev. A 75, 062118 (2007).
James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).
Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).
Prevedel, R., Hamel, D. R., Colbeck, R., Fisher, K. & Resch, K. J. Experimental investigation of the uncertainty principle in the presence of quantum memory. Nature Phys.doi:10.1038/nphys2048 (2011).
Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997).
O’Brien, J. L. et al. Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 93, 080502 (2004).
Altepeter, J. B., Jeffrey, E. R. & Kwiat, P. G. in Advances in Atomic, Molecular and Optical Physics Vol. 52 (eds Berman, P. & Lin, C.) 107–161 (Elsevier, 2005).
Acknowledgements
This work was supported by the National Basic Research Program of China (Grants No. 2011CB921200), National Natural Science Foundation of China (Grant Nos 11004185, 60921091, 10874162), and the China Postdoctoral Science Foundation (Grant No. 20100470836). The CQT is funded by the Singapore MoE and the NRF as part of the Research Centres of Excellence programme.
Author information
Authors and Affiliations
Contributions
C-F.L. and J-S.X. designed the experiment. C-F.L. supervised the project. J-S.X. and X-Y.X. performed the experiment. J-S.X. analysed the theoretical prediction and experimental data. K.L. and G-C.G. contributed to the theoretical analysis. X-Y.X. drew the sketch of the experimental setup. J-S.X. wrote the paper. All authors commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 291 kb)
Rights and permissions
About this article
Cite this article
Li, CF., Xu, JS., Xu, XY. et al. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nature Phys 7, 752–756 (2011). https://doi.org/10.1038/nphys2047
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2047
This article is cited by
-
Strong majorization uncertainty relations and experimental verifications
npj Quantum Information (2023)
-
Relationship between quantum-memory-assisted entropic uncertainty and steered quantum coherence in a two-qubit X state
Quantum Information Processing (2023)
-
Manipulating the measured uncertainty under Lee-Yang dephasing channels through local \({\cal P}{\cal T}\)-symmetric operations
Frontiers of Physics (2023)
-
The effect of Stark shift on the correlation between two qubits and a two-mode of the cavity-field
Optical and Quantum Electronics (2023)
-
Physical interpretation of nonlocal quantum correlation through local description of subsystems
Scientific Reports (2022)


