Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement

Abstract

Heisenberg’s uncertainty principle1 provides a fundamental limitation on the ability of an observer holding classical information to predict the outcome when one of two measurements is performed on a quantum system. However, an observer with access to a particle (stored in a quantum memory) which is entangled with the system generally has a reduced uncertainty: indeed, if the particle and system are maximally entangled, the observer can perfectly predict the outcome of whichever measurement is chosen. This effect has recently been quantified2 in a new entropic uncertainty relation. Here we experimentally investigate this relation, showing its effectiveness as an efficient entanglement witness. We use entangled photon pairs, an optical delay line serving as a simple quantum memory and fast, active feed-forward. Our results quantitatively agree with the new uncertainty relation. Our technique acts as a witness for almost all entangled states in our experiment as we obtain lower uncertainties than would be possible without the entangled particle3,4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experiment.
Figure 2: Experimental results.
Figure 3: Uncertainties for other experimental settings.

Similar content being viewed by others

References

  1. Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927).

    Article  ADS  Google Scholar 

  2. Berta, M., Christandl, M., Colbeck, R., Renes, J. M. & Renner, R. The uncertainty principle in the presence of quantum memory. Nature Phys. 6, 659–662 (2010).

    Article  ADS  Google Scholar 

  3. Bialynicki-Birula, I. & Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 44, 129–132 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  4. Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  5. Maassen, H. & Uffink, J. B. Generalized entropic uncertainty relations. Phys. Rev. Lett 60, 1103–1106 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  6. Bennett, C. H. & Brassard, G. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 175–179 (1984).

  7. Robertson, H. P. The uncertainty principle. Phys. Rev. 34, 163–164 (1929).

    Article  ADS  Google Scholar 

  8. Schrödinger, E. Proceedings of The Prussian Academy of Sciences Physics-Mathematical Section Vol. XIX, 296–303 (1930).

  9. Elion, W., Matters, M., Geigenmuller, U. & Mooij, J. Direct demonstration of Heisenberg’s uncertainty principle in a superconductor. Nature 371, 594–595 (1994).

    Article  ADS  Google Scholar 

  10. Nairz, O., Arndt, M. & Zeilinger, A. Experimental verification of the Heisenberg uncertainty principle for fullerene molecules. Phys. Rev. A 65, 032109 (2002).

    Article  ADS  Google Scholar 

  11. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  ADS  Google Scholar 

  12. Schliesser, A., Arcizet, O., Riviere, R., Anetsberger, G. & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys. 5, 509–514 (2009).

    Article  ADS  Google Scholar 

  13. Kraus, K. Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  14. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article  ADS  Google Scholar 

  15. Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).

    Article  ADS  Google Scholar 

  16. Kim, Y-H. & Shih, Y. Experimental realization of Popper’s experiment: Violation of the uncertainty principle? Found. Phys. 29, 1849–1861 (1999).

    Article  Google Scholar 

  17. Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).

    Article  ADS  Google Scholar 

  18. Renes, J. M. & Boileau, J-C. Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009).

    Article  ADS  Google Scholar 

  19. Horodecki, R. & Horodecki, P. Quantum redundancies and local realism. Phys. Lett. A 194, 147–152 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  20. Kim, T., Fiorentino, M. & Wong, F. N. C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A 73, 012316 (2006).

    Article  ADS  Google Scholar 

  21. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).

    Article  ADS  Google Scholar 

  22. Biggerstaff, D. N. et al. Cluster state quantum computing enhanced by high-fidelity generalized measurements. Phys. Rev. Lett. 103, 240509 (2009).

    Article  Google Scholar 

  23. James, D., Kwiat, P., Munro, W. & White, A. Measurement of qubits. Phys. Rev. A 64, 52312 (2001).

    Article  ADS  Google Scholar 

  24. Hofmann, H. F. & Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  25. GĂĽhne, O. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 117903 (2004).

    Article  ADS  Google Scholar 

  26. Terhal, B. M. Detecting quantum entanglement. Theor. Comp. Sc. 287, 313–335 (2002).

    Article  MathSciNet  Google Scholar 

  27. GĂĽhne, O. Detection of entanglement with few local measurements. Phys. Rev. A 66, 062305 (2002).

    Article  ADS  Google Scholar 

  28. Gühne, O. & Toth, G. Entanglement detection. Physics Rep. 474, 1–75 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  29. Li, C-F., Xu, J-S., Xu, X-Y., Li, K. & Guo, G-C. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nature Phys. 10.1038/nphys2047 (2011).

  30. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  31. Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Piani for valuable discussions and the Ontario Ministry of Research and Innovation ERA, QuantumWorks, NSERC, OCE, Industry Canada and CFI for financial support. R.P. acknowledges support by MRI and the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Contributions

K.J.R., R.P. and R.C. designed the experiment. R.P., D.R.H. and K.F. performed the experiment. R.C. provided theoretical support. R.P. analysed the data. R.P. and R.C. wrote the paper. All authors discussed and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Robert Prevedel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prevedel, R., Hamel, D., Colbeck, R. et al. Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nature Phys 7, 757–761 (2011). https://doi.org/10.1038/nphys2048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing