Abstract
Heisenberg’s uncertainty principle1 provides a fundamental limitation on the ability of an observer holding classical information to predict the outcome when one of two measurements is performed on a quantum system. However, an observer with access to a particle (stored in a quantum memory) which is entangled with the system generally has a reduced uncertainty: indeed, if the particle and system are maximally entangled, the observer can perfectly predict the outcome of whichever measurement is chosen. This effect has recently been quantified2 in a new entropic uncertainty relation. Here we experimentally investigate this relation, showing its effectiveness as an efficient entanglement witness. We use entangled photon pairs, an optical delay line serving as a simple quantum memory and fast, active feed-forward. Our results quantitatively agree with the new uncertainty relation. Our technique acts as a witness for almost all entangled states in our experiment as we obtain lower uncertainties than would be possible without the entangled particle3,4,5.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927).
Berta, M., Christandl, M., Colbeck, R., Renes, J. M. & Renner, R. The uncertainty principle in the presence of quantum memory. Nature Phys. 6, 659–662 (2010).
Bialynicki-Birula, I. & Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 44, 129–132 (1975).
Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983).
Maassen, H. & Uffink, J. B. Generalized entropic uncertainty relations. Phys. Rev. Lett 60, 1103–1106 (1988).
Bennett, C. H. & Brassard, G. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 175–179 (1984).
Robertson, H. P. The uncertainty principle. Phys. Rev. 34, 163–164 (1929).
Schrödinger, E. Proceedings of The Prussian Academy of Sciences Physics-Mathematical Section Vol. XIX, 296–303 (1930).
Elion, W., Matters, M., Geigenmuller, U. & Mooij, J. Direct demonstration of Heisenberg’s uncertainty principle in a superconductor. Nature 371, 594–595 (1994).
Nairz, O., Arndt, M. & Zeilinger, A. Experimental verification of the Heisenberg uncertainty principle for fullerene molecules. Phys. Rev. A 65, 032109 (2002).
LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).
Schliesser, A., Arcizet, O., Riviere, R., Anetsberger, G. & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys. 5, 509–514 (2009).
Kraus, K. Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987).
Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).
Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).
Kim, Y-H. & Shih, Y. Experimental realization of Popper’s experiment: Violation of the uncertainty principle? Found. Phys. 29, 1849–1861 (1999).
Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).
Renes, J. M. & Boileau, J-C. Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009).
Horodecki, R. & Horodecki, P. Quantum redundancies and local realism. Phys. Lett. A 194, 147–152 (1994).
Kim, T., Fiorentino, M. & Wong, F. N. C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A 73, 012316 (2006).
Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).
Biggerstaff, D. N. et al. Cluster state quantum computing enhanced by high-fidelity generalized measurements. Phys. Rev. Lett. 103, 240509 (2009).
James, D., Kwiat, P., Munro, W. & White, A. Measurement of qubits. Phys. Rev. A 64, 52312 (2001).
Hofmann, H. F. & Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003).
GĂĽhne, O. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 117903 (2004).
Terhal, B. M. Detecting quantum entanglement. Theor. Comp. Sc. 287, 313–335 (2002).
GĂĽhne, O. Detection of entanglement with few local measurements. Phys. Rev. A 66, 062305 (2002).
Gühne, O. & Toth, G. Entanglement detection. Physics Rep. 474, 1–75 (2009).
Li, C-F., Xu, J-S., Xu, X-Y., Li, K. & Guo, G-C. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nature Phys. 10.1038/nphys2047 (2011).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).
Acknowledgements
We thank M. Piani for valuable discussions and the Ontario Ministry of Research and Innovation ERA, QuantumWorks, NSERC, OCE, Industry Canada and CFI for financial support. R.P. acknowledges support by MRI and the Austrian Science Fund (FWF).
Author information
Authors and Affiliations
Contributions
K.J.R., R.P. and R.C. designed the experiment. R.P., D.R.H. and K.F. performed the experiment. R.C. provided theoretical support. R.P. analysed the data. R.P. and R.C. wrote the paper. All authors discussed and contributed to the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 434 kb)
Rights and permissions
About this article
Cite this article
Prevedel, R., Hamel, D., Colbeck, R. et al. Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nature Phys 7, 757–761 (2011). https://doi.org/10.1038/nphys2048
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2048
This article is cited by
-
Strong majorization uncertainty relations and experimental verifications
npj Quantum Information (2023)
-
Relationship between quantum-memory-assisted entropic uncertainty and steered quantum coherence in a two-qubit X state
Quantum Information Processing (2023)
-
Quantum Uncertainty Dynamics
Foundations of Physics (2023)
-
The effect of Stark shift on the correlation between two qubits and a two-mode of the cavity-field
Optical and Quantum Electronics (2023)
-
Quantum-Memory-Assisted Entropic Uncertainty Relation in the Heisenberg XXZ Spin Chain Model with External Magnetic Fields and Dzyaloshinski-Moriya Interaction
International Journal of Theoretical Physics (2022)


