Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Arbitrarily shaped high-coherence electron bunches from cold atoms

Abstract

Ultrafast electron diffractive imaging of nanoscale objects such as biological molecules1,2 and defects in solid-state devices3 provides crucial information on structure and dynamic processes: for example, determination of the form and function of membrane proteins, vital for many key goals in modern biological science, including rational drug design4. High brightness and high coherence are required to achieve the necessary spatial and temporal resolution, but have been limited by the thermal nature of conventional electron sources and by divergence due to repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that, if the electrons are shaped into ellipsoidal bunches with uniform density5, the Coulomb explosion can be reversed using conventional optics, to deliver the maximum possible brightness at the target6,7. Here we demonstrate arbitrary and real-time control of the shape of cold electron bunches extracted from laser-cooled atoms. The ability to dynamically shape the electron source itself and to observe this shape in the propagated electron bunch provides a remarkable experimental demonstration of the intrinsically high spatial coherence of a cold-atom electron source, and the potential for alleviation of electron-source brightness limitations due to Coulomb explosion6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arbitrary electron density distribution bunches using spatially structured photoionization of a cold atom cloud.
Figure 2: Effect of electron temperature on structural degradation.

Similar content being viewed by others

References

  1. Dwyer, J. R. et al. Femtosecond electron diffraction: ‘Making the molecular movie’. Phil. Tran. R. Soc. A 364, 741–778 (2006).

    Article  ADS  Google Scholar 

  2. Williamson, J. C., Cao, J., Ihee, H., Frey, H. & Zewail, A. H. Clocking transient chemical changes by ultrafast electron diffraction. Nature 386, 159–162 (1997).

    Article  ADS  Google Scholar 

  3. Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. J. D. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).

    Article  ADS  Google Scholar 

  4. Pinto, L. H., Holsinger, L. J. & Lamb, R. A. Influenza virus M2 protein has ion channel activity. Cell 69, 517–528 (1992).

    Article  Google Scholar 

  5. van der Geer, S. B. et al. Simulated performance of an ultracold ion source. J. Appl. Phys. 102, 094312 (2007).

    Article  ADS  Google Scholar 

  6. Luiten, O. J., van der Geer, S. B., de Loos, M. J., Kiewiet, F. B. & van der Wiel, M. J. How to realize uniform three-dimensional ellipsoidal electron bunches. Phys. Rev. Lett. 93, 094802 (2004).

    Article  ADS  Google Scholar 

  7. Musumeci, P., Moody, J. T., England, R. J., Rosenzweig, J. B. & Tran, T. Experimental generation and characterization of uniformly filled ellipsoidal electron-beam distributions. Phys. Rev. Lett. 100, 244801 (2008).

    Article  ADS  Google Scholar 

  8. van Oudheusden, T. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).

    Article  ADS  Google Scholar 

  9. Tokita, S. et al. Single-shot femtosecond electron diffraction with laser-accelerated electrons: Experimental demonstration of electron pulse compression. Phys. Rev. Lett. 105, 215004 (2010).

    Article  ADS  Google Scholar 

  10. van Oudheusden, T. et al. Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J. Appl. Phys. 102, 093501 (2007).

    Article  ADS  Google Scholar 

  11. van der Geer, S. B., de Loos, M. J., Vredenbregt, E. J. D. & Luiten, O. J. Ultracold electron source for single-shot, ultrafast electron diffraction. Micro. Microanal. 15, 282–289 (2009).

    Article  ADS  Google Scholar 

  12. Claessens, B. J., Reijnders, M. P., Taban, G., Luiten, O. J. & Vredenbregt, E. J. D. Cold electron and ion beams generated from trapped atoms. Phys. Plasmas 14, 093101 (2007).

    Article  ADS  Google Scholar 

  13. Killian, T. C. et al. Creation of an ultracold neutral plasma. Phys. Rev. Lett. 83, 4776–4779 (1999).

    Article  ADS  Google Scholar 

  14. Nugent, K. A. Coherent methods in the X-ray sciences. Adv. Phys. 59, 1–99 (2010).

    Article  ADS  Google Scholar 

  15. Allen, L. & Eberly, J. H. Optical Resonance and Two-Level Atoms (Dover Publications, 1987).

    Google Scholar 

  16. Sheludko, D. V. Shaped electron bunches from ultracold plasma, Ph.D. thesis, Univ. Melbourne (2010). http://repository.unimelb.edu.au/10187/9228.

  17. Taban, G. et al. Ultracold electron source for single-shot diffraction studies. Europhys. Lett. 91, 46004 (2010).

    Article  ADS  Google Scholar 

  18. Reiser, M. Theory and Design of Charged Particle Beams (Wiley-VCH, 2008).

    Book  Google Scholar 

  19. van Oudheusden, T. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).

    Article  ADS  Google Scholar 

  20. Reijnders, M. P. et al. Phase-space manipulation of ultracold ion bunches with time-dependent fields. Phys. Rev. Lett. 105, 034802 (2010).

    Article  ADS  Google Scholar 

  21. Hanssen, J. L., Dakin, E. A., McClelland, J. J. & Jacka, M. Using laser-cooled atoms as a focused ion beam source. J. Vac. Sci. Technol. B 24, 2907–2910 (2006).

    Article  Google Scholar 

  22. Steele, A., Knuffman, B., McClelland, J. & Orloff, J. Focused chromium ion beam. J. Vacuum Sci. Technol. B 28, C6F1 (2010).

    Article  Google Scholar 

  23. Ito, R. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).

    Article  Google Scholar 

  24. Bell, S. C. et al. A slow atom source using a collimated effusive oven and a single-layer variable pitch coil Zeeman slower. Rev. Sci. Inst. 81, 013105 (2010).

    Article  ADS  Google Scholar 

  25. Merkt, F. et al. High Rydberg states of argon: Stark effect and field-ionization properties. J. Phys. B 31, 1705–1724 (1998).

    Article  ADS  Google Scholar 

  26. Steck, D. A. Rubidium 85 D-line data. Los Alamos National Laboratory, available online at http://steck.us/alkalidata (2008).

  27. Baranov, L. Y., Kris, R., Levine, R. D. & Even, U. On the field ionization spectrum of high Rydberg states. J. Chem. Phys. 100, 186–196 (1994).

    Article  ADS  Google Scholar 

  28. Johansson, M. & Bengtsson, J. Robust design method for highly efficient beam-shaping diffractive optical elements using an iterative-Fourier-transform algorithm with soft operations. J. Mod. Opt. 47, 1385–1398 (2000).

    Article  ADS  Google Scholar 

  29. Sheludko, D. V. et al. State-selective imaging of cold atoms. Phys. Rev. A 77, 033401 (2008).

    Article  ADS  Google Scholar 

  30. Nugent, K. A. Quasi-homogeneous fields: A van Cittert–Zernike theorem and the recovery of correlations from intensity. Opt. Commun. 118, 9–13 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. J. D. Vredenbregt and O. J. Luiten for discussions and advice. This work was supported by the Australian Research Council Federation Fellowship scheme and Australian Research Council Discovery Project DP1096025.

Author information

Authors and Affiliations

Authors

Contributions

A.J.M. and D.V.S. contributed equally to this work; they executed the experiments and acquired and analysed the data; S.D.S. contributed to the analysis of electron coherence; D.V.S., M.J. and S.C.B. designed and constructed the apparatus; K.A.N. contributed to the theoretical analysis; A.J.M., D.V.S., K.A.N. and R.E.S. wrote the manuscript; R.E.S. conceived and directed the project.

Corresponding author

Correspondence to R. E. Scholten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCulloch, A., Sheludko, D., Saliba, S. et al. Arbitrarily shaped high-coherence electron bunches from cold atoms. Nature Phys 7, 785–788 (2011). https://doi.org/10.1038/nphys2052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing