Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems

Abstract

Realistic quantum mechanical systems are always exposed to an external environment. This often induces Markovian processes in which the system loses information to its surroundings. However, many quantum systems exhibit non-Markovian behaviour with a flow of information from the environment back to the system1,2,3,4,5. The environment usually consists of large number of degrees of freedom which are difficult to control, but some sophisticated schemes for reservoir engineering have been developed6. The control of open systems plays a decisive role, for example, in proposals for entanglement generation7,8,9 and dissipative quantum computation10, for the design of quantum memories11 and in quantum metrology12. Here we report an all-optical experiment which allows one to drive the open system from the Markovian to the non-Markovian regime, to control the information flow between the system and the environment, and to determine the degree of non-Markovianity by measurements on the open system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental set-up.
Figure 2: The frequency spectrum of the initial state for various values of the tilt angle θ.
Figure 3: The distance and the concurrence as a function of the effective path difference for four different values of the tilt angle θ.
Figure 4: The change of the trace distance and of the concurrence as functions of the tilt angle θ.

Similar content being viewed by others

References

  1. Breuer, H-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2007).

    Book  Google Scholar 

  2. Lee, H., Cheng, Y-C. & Fleming, G. R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

    Article  ADS  Google Scholar 

  3. Cederbaum, L. S., Gindensperger, E. & Burghardt, I. Short-time dynamics through conical intersections in macrosystems. Phys. Rev. Lett. 94, 113003 (2005).

    Article  ADS  Google Scholar 

  4. Rebentrost, P. & Aspuru-Guzik, A. Exciton-phonon information flow in the energy transfer process of photosynthetic complexes. J. Chem. Phys. 134, 101103 (2011).

    Article  ADS  Google Scholar 

  5. Tony, J. G., Apollaro, T. J. G., Di Franco, C., Plastina, F. & Paternostro, M. Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain. Phys. Rev. A 83, 032103 (2011).

    Article  ADS  Google Scholar 

  6. Myatt, C. J. et al. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000).

    Article  ADS  Google Scholar 

  7. Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).

    Article  ADS  Google Scholar 

  8. Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011).

    Article  ADS  Google Scholar 

  9. Cho, J., Bose, S. & Kim, M. S. Optical pumping into many-body entanglement. Phys. Rev. Lett. 106, 020504 (2011).

    Article  ADS  Google Scholar 

  10. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009).

    Article  ADS  Google Scholar 

  11. Pastawski, F., Clemente, L. & Cirac, J. I. Quantum memories based on engineered dissipation. Phys. Rev. A 83, 012304 (2011).

    Article  ADS  Google Scholar 

  12. Goldstein, G. et al. Environment assisted precision measurement. Phys. Rev. Lett. 106, 140502 (2011).

    Article  ADS  Google Scholar 

  13. Gorini, V., Kossakowski, A. & Sudarshan, E. C. G. Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821–825 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  14. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  15. Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

    Article  ADS  Google Scholar 

  16. Xu, J-S. et al. Experimental characterization of entanglement dynamics in noisy channels. Phys. Rev. Lett. 103, 240502 (2009).

    Article  ADS  Google Scholar 

  17. Xu, J-S. et al. Experimental investigation of classical and quantum correlations under decoherence. Nature Commun. 1, 7 (2010).

    Article  Google Scholar 

  18. Wolf, M. M. et al. Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  19. Breuer, H-P., Laine, E-M. & Piilo, J. Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  20. Laine, E-M., Piilo, J. & Breuer, H-P. Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010).

    Article  ADS  Google Scholar 

  21. Rivas, A., Huelga, S. F. & Plenio, M. B. Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  22. Helstrom, C. W. Quantum Detection and Estimation Theory (Academic, 1976).

    MATH  Google Scholar 

  23. Holevo, A. S. An analog of the theory of statistical decisions in noncommutative theory of probability. Trans. Moscow Math. Soc. 26, 133–149 (1972).

    MATH  Google Scholar 

  24. Hayashi, M. Quantum Information (Springer, 2006).

    MATH  Google Scholar 

  25. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    Article  ADS  Google Scholar 

  26. Rungta, P. et al. Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  27. Perdomo, A. et al. Engineering directed excitonic energy transfer. Appl. Phys. Lett. 96, 093114 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Fundamental Research Program, National Natural Science Foundation of China (Grant Nos. 60921091, 10874162 and 10734060), the Magnus Ehrnrooth Foundation, and the Graduate School of Modern Optics and Photonics.

Author information

Authors and Affiliations

Authors

Contributions

B-H.L., L.L., Y-F.H., C-F.L. and G-C.G. planned, designed and implemented the experiments. E-M.L., H-P.B. and J.P. carried out the theoretical analysis and developed the interpretation. B-H.L., C-F.L., E-M.L, H-P.B. and J.P. wrote the paper and all authors discussed its contents.

Corresponding authors

Correspondence to Chuan-Feng Li or Jyrki Piilo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, BH., Li, L., Huang, YF. et al. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Phys 7, 931–934 (2011). https://doi.org/10.1038/nphys2085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing