Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Focusing of short-pulse high-intensity laser-accelerated proton beams

Abstract

Recent progress in generating high-energy (>50 MeV) protons from intense laser–matter interactions (1018–1021 W cm−2; refs 1, 2, 3, 4, 5, 6, 7) has opened up new areas of research, with applications in radiography8, oncology9, astrophysics10, medical imaging11, high-energy-density physics12,13,14, and ion-proton beam fast ignition15,16,17,18,19. With the discovery of proton focusing with curved surfaces20,21, rapid advances in these areas will be driven by improved focusing technologies. Here we report on the first investigation of the generation and focusing of a proton beam using a cone-shaped target. We clearly show that the focusing is strongly affected by the electric fields in the beam in both open and enclosed (cone) geometries, bending the trajectories near the axis. Also in the cone geometry, a sheath electric field effectively ‘channels’ the proton beam through the cone tip, substantially improving the beam focusing properties. These results agree well with particle simulations and provide the physics basis for many future applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and targets.
Figure 2: D80 diameter and focal position.
Figure 3: Simulation of probe particles.
Figure 4: D80 and Δ80 fluence profiles.

Similar content being viewed by others

References

  1. Hatchett, S. P. et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 2076–2082 (2000).

    Article  ADS  Google Scholar 

  2. Snavely, R. A. et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000).

    Article  ADS  Google Scholar 

  3. Wilks, S. C. et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542–549 (2001).

    Article  ADS  Google Scholar 

  4. Borghesi, M. et al. Multi-MeV proton source investigations in ultraintense laser-foil interactions. Phys. Rev. Lett. 92, 055003 (2004).

    Article  ADS  Google Scholar 

  5. Fuchs, J. et al. Laser-driven proton scaling laws and new paths towards energy increase. Nature Phys. 2, 48–54 (2006).

    Article  ADS  Google Scholar 

  6. Hegelich, B. M. et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006).

    Article  ADS  Google Scholar 

  7. Robson, L. et al. Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nature Phys. 3, 58–62 (2007).

    Article  ADS  Google Scholar 

  8. Mackinnon, A. J. et al. Proton radiography of a laser-driven implosion. Phys. Rev. Lett. 97, 045001 (2006).

    Article  ADS  Google Scholar 

  9. Bulanov, S. V. & Khoroshkov, V. S. Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453–456 (2002).

    Article  ADS  Google Scholar 

  10. Baraffe, I. The structure and evolution of giant planets. Space Sci. Rev. 116, 67–76 (2005).

    Article  ADS  Google Scholar 

  11. Fritzier, S. et al. Proton beams generated with high-intensity lasers: Applications to medical isotope production. Appl. Phys. Lett. 83, 3039–3041 (2003).

    Article  ADS  Google Scholar 

  12. Dyer, G. M. et al. Equation of state measurements of dense plasma heated with fast protons. Phys. Rev. Lett. 101, 015002 (2008).

    Article  ADS  Google Scholar 

  13. Mason, T. E. Pulsed neutron scattering for the 21st century. Phys. Today 59, 44–49 (May, 2006).

    Article  ADS  Google Scholar 

  14. Higginson, D. P. et al. Laser generated neutron source for neutron resonance spectroscopy. Phys. Plasmas 17, 100701 (2010).

    Article  ADS  Google Scholar 

  15. Key, M. H. et al. Study of electron and proton isochoric heating for fast ignition. J. Phys. IV France 133, 371–378 (2006).

    Article  Google Scholar 

  16. Key, M. H. et al. Proton fast ignition. Fusion Sci. Tech. 49, 440–452 (2006).

    Article  Google Scholar 

  17. Roth, M. et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001).

    Article  ADS  Google Scholar 

  18. Temporal, M. & Honrubia, J. J. Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas 9, 3098–3107 (2002).

    Article  ADS  Google Scholar 

  19. Tabak, M. et al. Ignition and gain with ultrapowerful lasers. Phys. Plasmas 1, 1626–1634 (1994).

    Article  ADS  Google Scholar 

  20. Snavely, R. A. et al. Laser generated proton beam focusing and high temperature isochoric heating of solid matter. Phys. Plasmas 14, 092703 (2007).

    Article  ADS  Google Scholar 

  21. Patel, P. K. et al. Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004 (2003).

    Article  ADS  Google Scholar 

  22. Green, J. S. et al. Surface heating of wire plasma using laser—irradiated cone geometries. Nature Phys. 3, 853–856 (2007).

    Article  ADS  Google Scholar 

  23. Kodama, R. et al. Fast heating of ultra-high density plasma as a step toward laser fusion ignition. Nature 412, 798–802 (2001).

    Article  ADS  Google Scholar 

  24. Hey, D. S. et al. Laser-accelerated proton conversion efficiency thickness scaling. Phys. Plasmas 16, 123108 (2009).

    Article  ADS  Google Scholar 

  25. Toncian, T. et al. Ultrafast laser- driven microlens to focus and energy-select mega-electron volt protons. Science 312, 410–413 (2006).

    Article  ADS  Google Scholar 

  26. Kar, S. et al. Dynamic control of laser-produced proton beams. Phys. Rev. Lett. 100, 105004 (2008).

    Article  ADS  Google Scholar 

  27. Kar, S. et al. Ballistic focusing of polyenergetic protons driven by petawatt laser pulses. Phys. Rev. Lett. 106, 225003 (2011).

    Article  ADS  Google Scholar 

  28. Batha, S., Aragonez, R. & Archuleta, F. TRIDENT high-energy-density facility experimental capabilities and diagnostics. Rev. Sci. Instrum. 79, 10F305 (2008).

    Article  Google Scholar 

  29. Foord, M. E. et al. Proton generation and efficiency from an intense laser irradiated foil. High Energy. Density Phys. 3, 365–370 (2007).

    Article  ADS  Google Scholar 

  30. Nürnberg, F. et al. Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Rev. Sci. Instrum. 80, 033301 (2009).

    Article  ADS  Google Scholar 

  31. Welch, D. R., Rose, D. V., Oliver, B. V. & Clark, R. E. Simulation techniques for heavy ion fusion chamber transport. Nucl. Instrum. Methods A 464, 134–139 (2001).

    Article  ADS  Google Scholar 

  32. Offermann, D. T. et al. Characterization and focusing of light ion beams generated by ultra-intensely irradiated thin foils at the kilojoule scale. Phys. Plasmas 18, 056713 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank P. Norreys for helpful discussions concerning this work and gratefully acknowledge the support of the staff at the TRIDENT laser facility at Los Alamos National Laboratory. We would also like to thank T. Yabuuchi for useful discussions. T.B. is supported through the Lawrence Scholar Program at Lawrence Livermore National Laboratory. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-SC0001265. M.R., A.O. and D.K. are supported by the BMBF 06DA9044I.

Author information

Authors and Affiliations

Authors

Contributions

F.N.B., M.E.F., P.K.P., R.B.S., M.H.K., H.S.M., E.M.G. M.S.W. and T.B. were involved in the project planning and target design. T.B., K.A.F., D.T.O., S.A.G., L.C.J., D.P.H., D.C.G., A.O., D.K. and M.R. contributed to the experimental work. T.B. and C.B. carried out the data analysis and wrote the letter along with F.N.B. and M.E.F., where M.E.F. performed the simulations.

Corresponding author

Correspondence to Farhat N. Beg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartal, T., Foord, M., Bellei, C. et al. Focusing of short-pulse high-intensity laser-accelerated proton beams. Nature Phys 8, 139–142 (2012). https://doi.org/10.1038/nphys2153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing