Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superconducting nanowires as quantum phase-slip junctions

Abstract

For a superconductor, charge and phase are dual quantum variables. A phase-slip event in a superconducting nanowire changes the phase difference over the wire by 2π; it is the dual process to Cooper-pair tunnelling in a Josephson junction. Phase slip by thermal activation at high temperatures is well understood1. Phase slip by quantum tunnelling at low temperatures is considered plausible2,3, but experiments on the resistance of nanowires4,5 are inconclusive on this point. Büchler et al. 6 conclude that successive quantum phase slip (QPS) events can be coherent. Here, we demonstrate that, if it exists, coherent QPS is the exact dual to Josephson tunnelling. A narrow nanowire should act as a QPS junction that shows kinetic capacitance, a plasma resonance and current plateaus of interest for nanoelectronic applications. We suggest feasible experiments to unequivocally confirm the existence for coherent QPS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circuit and energy dependence.
Figure 2: Dual equivalence of Josephson and QPS junctions in circuits.
Figure 3: Shapiro steps at constant current in a QPS junction.

Similar content being viewed by others

References

  1. Tinkham, M. Introduction to Superconductivity 2nd edn 288 (McGraw-Hill, New York, 1996).

    Google Scholar 

  2. Giordano, N. Evidence for macroscopic quantum tunneling in one-dimensional superconductors. Phys. Rev. Lett. 61, 2137–2140 (1988).

    Article  ADS  Google Scholar 

  3. Lau, C. N., Markovic, N., Bockrath, M., Bezryadin, A. & Tinkham, M. Quantum phase slips in superconducting nanowires. Phys. Rev. Lett. 87, 217003 (2001).

    Article  ADS  Google Scholar 

  4. Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (1999).

    Article  ADS  Google Scholar 

  5. Bollinger, A. T., Rogachev, A. & Bezryadin, A. Coulomb blockade in the insulating regime of short superconducting nanowires. Preprint at <http://arxiv.org/abs/cond-mat/0508300> (2005).

  6. Büchler, H. P., Geshkenbein, V. B. & Blatter, G. Quantum fluctuations in thin superconducting wires of finite length. Phys. Rev. Lett. 92, 067007 (2004).

    Article  ADS  Google Scholar 

  7. Zaikin, A. D., Golubev, D. S., van Otterlo, A. & Zimanyi, G. T. Quantum phase slips and transport in ultrathin superconducting wires. Phys. Rev. Lett. 78, 1552–1555 (1997).

    Article  ADS  Google Scholar 

  8. Golubev, D. S. & Zaikin, A. D. Quantum tunneling of the order parameter in superconducting nanowires. Phys. Rev. B 64, 014504 (2001).

    Article  ADS  Google Scholar 

  9. Kulik, I. O. Frequency dependence of the penetration depth of an electric field in a superconductor. Fiz. Nizk. Temp. 5, 1391 (1979) English translation: Sov. J. Low Temp. Phys. 5, 656–662 (1979).

    Google Scholar 

  10. Mooij, J. E. & Schön, G. Propagating plasma mode in thin superconducting filaments. Phys. Rev. Lett. 55, 114–117 (1985).

    Article  ADS  Google Scholar 

  11. Schmid, A. Diffusion and localization in a dissipative quantum system. Phys. Rev. Lett. 51, 1506–1509 (1983).

    Article  ADS  Google Scholar 

  12. Schön, G. & Zaikin, A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–412 (1990).

    Article  ADS  Google Scholar 

  13. Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Phys. Scr. T 76, 165–170 (1998).

    Article  ADS  Google Scholar 

  14. Mooij, J. E. & Harmans, C. J. P. M. Phase-slip flux qubits. New J. Phys. 7, 219 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  15. Caldeira, A. O. & Leggett, A. J. Quantum tunnelling in a dissipative system. Ann. Phys. 149, 374–456 (1983).

    Article  ADS  Google Scholar 

  16. Siddiqi, I. et al. Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction. Phys. Rev. Lett. 94, 027005 (2005).

    Article  ADS  Google Scholar 

  17. Averin, D. V., Zorin, A. B. & Likharev, K. K. Bloch oscillations in small Josephson junctions. Sov. Phys. JETP 61, 407–413 (1985).

    Google Scholar 

  18. Likharev, K. K. & Zorin, A. B. Theory of the Bloch-wave oscillations in small Josephson junctions. J. Low Temp. Phys. 59, 347–382 (1985).

    Article  ADS  Google Scholar 

  19. Kuzmin, L. & Haviland, D. B. Observation of the Bloch oscillations in an ultrasmall Josephson junction. Phys. Rev. Lett. 67, 2890–2893 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Levitov, L. Glazman, T. P. Orlando, C. J. P. M. Harmans, A. D. Zaikin and A. Bezryadin for discussions. Our research is supported by FOM, NanoNed and EuroSQIP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Mooij.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooij, J., Nazarov, Y. Superconducting nanowires as quantum phase-slip junctions. Nature Phys 2, 169–172 (2006). https://doi.org/10.1038/nphys234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing