Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Half-solitons in a polariton quantum fluid behave like magnetic monopoles

Abstract

Magnetic monopoles1 are point-like sources of magnetic field, never observed as fundamental particles. This has triggered the search for monopole analogues in the form of emergent particles in the solid state, with recent observations in spin-ice crystals2,3,4 and one-dimensional ferromagnetic nanowires5. Alternatively, topological excitations of spinor Bose–Einstein condensates have been predicted to demonstrate monopole textures6,7,8. Here we show the formation of monopole analogues in an exciton–polariton spinor condensate hitting a defect potential in a semiconductor microcavity. Oblique dark solitons are nucleated in the wake of the defect9,10 in the presence of an effective magnetic field acting on the polariton pseudo-spin11. The field splits the integer soliton into a pair of oblique half-solitons12 of opposite magnetic charge, subject to opposite effective magnetic forces. These mixed spin-phase excitations thus behave like one-dimensional monopoles13. Our results open the way to the generation of stable magnetic currents in photonic quantum fluids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polariton pseudospin, effective magnetic field and experimental set-up.
Figure 2: Density and phase tomography of the half-solitons.
Figure 3: Polarization texture of half-solitons.
Figure 4: Magnetic force acting on the half-solitons.

Similar content being viewed by others

References

  1. Dirac, P. A. M. Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60–72 (1931).

    Article  ADS  Google Scholar 

  2. Morris, D. J. P. et al. Strings and magnetic monopoles in the spin ice Dy2Ti2O7 . Science 326, 411–414 (2009).

    Article  ADS  Google Scholar 

  3. Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).

    Article  ADS  Google Scholar 

  4. Fennell, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7 . Science 326, 415–417 (2009).

    Article  ADS  Google Scholar 

  5. Ono, T. et al. Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284, 468–470 (1999).

    Article  ADS  Google Scholar 

  6. Busch, T. & Anglin, J. R. Wave-function monopoles in Bose–Einstein condensates. Phys. Rev. A 60, R2669–R2672 (1999).

    Article  ADS  Google Scholar 

  7. Stoof, H. T. C., Vliegen, E. & Al Khawaja, U. Monopoles in an antiferromagnetic Bose–Einstein condensate. Phys. Rev. Lett. 87, 120407 (2001).

    Article  ADS  Google Scholar 

  8. Pietilä, V. & Möttönen, M. Creation of Dirac monopoles in spinor Bose–Einstein condensates. Phys. Rev. Lett. 103, 030401 (2009).

    Article  ADS  Google Scholar 

  9. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    Article  ADS  Google Scholar 

  10. Grosso, G., Nardin, G., Morier-Genoud, F., Léger, Y. & Deveaud-Plédran, B. Soliton instabilities and vortex street formation in a polariton quantum fluid. Phys. Rev. Lett. 107, 245301 (2011).

    Article  ADS  Google Scholar 

  11. Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005).

    Article  ADS  Google Scholar 

  12. Flayac, H., Solnyshkov, D. D. & Malpuech, G. Oblique half-solitons and their generation in exciton–polariton condensates. Phys. Rev. B 83, 193305 (2011).

    Article  ADS  Google Scholar 

  13. Solnyshkov, D. D., Flayac, H. & Malpuech, G. Stable magnetic monopoles in spinor polariton condensates. Phys. Rev. B 85, 073105 (2012).

    Article  ADS  Google Scholar 

  14. Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998).

    Article  ADS  Google Scholar 

  15. Leanhardt, A. E., Shin, Y., Kielpinski, D., Pritchard, D. E. & Ketterle, W. Coreless vortex formation in a spinor Bose–Einstein condensate. Phys. Rev. Lett. 90, 140403 (2003).

    Article  ADS  Google Scholar 

  16. Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).

    Article  ADS  Google Scholar 

  17. Pitaevskii, L. & Strindgari, S. Bose–Einstein Condensation (Clarendon, 2003).

    MATH  Google Scholar 

  18. Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2007).

    Book  Google Scholar 

  19. Amo, A. et al. Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B 82, 081301 (2010).

    Article  ADS  Google Scholar 

  20. Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).

    Article  ADS  Google Scholar 

  21. Sanvitto, D. et al. All-optical control of the quantum flow of a polariton superfluid. Nature Photon. 5, 610–614 (2011).

    Article  ADS  Google Scholar 

  22. Tosi, G. et al. Sculpting oscillators with light within a nonlinear quantum fluid. Nature Phys. 8, 190–194 (2012).

    Article  ADS  Google Scholar 

  23. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  ADS  Google Scholar 

  24. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).

    Article  ADS  Google Scholar 

  25. Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nature Phys. 7, 635–641 (2011).

    Article  ADS  Google Scholar 

  26. Renucci, P. et al. Microcavity polariton spin quantum beats without a magnetic field: A manifestation of Coulomb exchange in dense and polarized polariton systems. Phys. Rev. B 72, 075317 (2005).

    Article  ADS  Google Scholar 

  27. Rubo, Y. G. Half vortices in exciton polariton condensates. Phys. Rev. Lett. 99, 106401–106404 (2007).

    Article  ADS  Google Scholar 

  28. Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton–polariton condensate. Science 326, 974–976 (2009).

    Article  ADS  Google Scholar 

  29. El, G. A., Gammal, A. & Kamchatnov, A. M. Oblique dark solitons in supersonic flow of a Bose–Einstein condensate. Phys. Rev. Lett. 97, 180405 (2006).

    Article  ADS  Google Scholar 

  30. Malpuech, G., Glazov, M. M., Shelykh, I. A., Bigenwald, P. & Kavokin, K. V. Electronic control of the polarization of light emitted by polariton lasers. Appl. Phys. Lett. 88, 111118 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Houdré for the microcavity sample and P. Voisin for fruitful discussions. This work was supported by the Agence Nationale de la Recherche (contract ANR-11-BS10-001), the RTRA (contract Boseflow1D), IFRAF, the FP7 ITNs Clermont4 (235114) and Spin-Optronics (237252), and the FP7 IRSES ‘Polaphen’ (246912). A.B. is a member of the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding authors

Correspondence to A. Bramati or A. Amo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2064 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 3015 kb)

Supplementary Movie

Supplementary Movie 2 (AVI 11425 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hivet, R., Flayac, H., Solnyshkov, D. et al. Half-solitons in a polariton quantum fluid behave like magnetic monopoles. Nature Phys 8, 724–728 (2012). https://doi.org/10.1038/nphys2406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing