Abstract
Magnetic monopoles1 are point-like sources of magnetic field, never observed as fundamental particles. This has triggered the search for monopole analogues in the form of emergent particles in the solid state, with recent observations in spin-ice crystals2,3,4 and one-dimensional ferromagnetic nanowires5. Alternatively, topological excitations of spinor Bose–Einstein condensates have been predicted to demonstrate monopole textures6,7,8. Here we show the formation of monopole analogues in an exciton–polariton spinor condensate hitting a defect potential in a semiconductor microcavity. Oblique dark solitons are nucleated in the wake of the defect9,10 in the presence of an effective magnetic field acting on the polariton pseudo-spin11. The field splits the integer soliton into a pair of oblique half-solitons12 of opposite magnetic charge, subject to opposite effective magnetic forces. These mixed spin-phase excitations thus behave like one-dimensional monopoles13. Our results open the way to the generation of stable magnetic currents in photonic quantum fluids.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Dirac, P. A. M. Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60–72 (1931).
Morris, D. J. P. et al. Strings and magnetic monopoles in the spin ice Dy2Ti2O7 . Science 326, 411–414 (2009).
Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).
Fennell, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7 . Science 326, 415–417 (2009).
Ono, T. et al. Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284, 468–470 (1999).
Busch, T. & Anglin, J. R. Wave-function monopoles in Bose–Einstein condensates. Phys. Rev. A 60, R2669–R2672 (1999).
Stoof, H. T. C., Vliegen, E. & Al Khawaja, U. Monopoles in an antiferromagnetic Bose–Einstein condensate. Phys. Rev. Lett. 87, 120407 (2001).
Pietilä, V. & Möttönen, M. Creation of Dirac monopoles in spinor Bose–Einstein condensates. Phys. Rev. Lett. 103, 030401 (2009).
Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).
Grosso, G., Nardin, G., Morier-Genoud, F., Léger, Y. & Deveaud-Plédran, B. Soliton instabilities and vortex street formation in a polariton quantum fluid. Phys. Rev. Lett. 107, 245301 (2011).
Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005).
Flayac, H., Solnyshkov, D. D. & Malpuech, G. Oblique half-solitons and their generation in exciton–polariton condensates. Phys. Rev. B 83, 193305 (2011).
Solnyshkov, D. D., Flayac, H. & Malpuech, G. Stable magnetic monopoles in spinor polariton condensates. Phys. Rev. B 85, 073105 (2012).
Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998).
Leanhardt, A. E., Shin, Y., Kielpinski, D., Pritchard, D. E. & Ketterle, W. Coreless vortex formation in a spinor Bose–Einstein condensate. Phys. Rev. Lett. 90, 140403 (2003).
Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).
Pitaevskii, L. & Strindgari, S. Bose–Einstein Condensation (Clarendon, 2003).
Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2007).
Amo, A. et al. Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B 82, 081301 (2010).
Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).
Sanvitto, D. et al. All-optical control of the quantum flow of a polariton superfluid. Nature Photon. 5, 610–614 (2011).
Tosi, G. et al. Sculpting oscillators with light within a nonlinear quantum fluid. Nature Phys. 8, 190–194 (2012).
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).
Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).
Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nature Phys. 7, 635–641 (2011).
Renucci, P. et al. Microcavity polariton spin quantum beats without a magnetic field: A manifestation of Coulomb exchange in dense and polarized polariton systems. Phys. Rev. B 72, 075317 (2005).
Rubo, Y. G. Half vortices in exciton polariton condensates. Phys. Rev. Lett. 99, 106401–106404 (2007).
Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton–polariton condensate. Science 326, 974–976 (2009).
El, G. A., Gammal, A. & Kamchatnov, A. M. Oblique dark solitons in supersonic flow of a Bose–Einstein condensate. Phys. Rev. Lett. 97, 180405 (2006).
Malpuech, G., Glazov, M. M., Shelykh, I. A., Bigenwald, P. & Kavokin, K. V. Electronic control of the polarization of light emitted by polariton lasers. Appl. Phys. Lett. 88, 111118 (2006).
Acknowledgements
We thank R. Houdré for the microcavity sample and P. Voisin for fruitful discussions. This work was supported by the Agence Nationale de la Recherche (contract ANR-11-BS10-001), the RTRA (contract Boseflow1D), IFRAF, the FP7 ITNs Clermont4 (235114) and Spin-Optronics (237252), and the FP7 IRSES ‘Polaphen’ (246912). A.B. is a member of the Institut Universitaire de France.
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of this work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 2064 kb)
Supplementary Movie
Supplementary Movie 1 (AVI 3015 kb)
Supplementary Movie
Supplementary Movie 2 (AVI 11425 kb)
Rights and permissions
About this article
Cite this article
Hivet, R., Flayac, H., Solnyshkov, D. et al. Half-solitons in a polariton quantum fluid behave like magnetic monopoles. Nature Phys 8, 724–728 (2012). https://doi.org/10.1038/nphys2406
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2406
This article is cited by
-
Magneto-optical induced supermode switching in quantum fluids of light
Communications Physics (2023)
-
Observation of Zitterbewegung in photonic microcavities
Light: Science & Applications (2023)
-
Moiré pattern of interference dislocations in condensate of indirect excitons
Nature Communications (2021)
-
Dispersion relation of the collective excitations in a resonantly driven polariton fluid
Nature Communications (2019)
-
Edge-emitting polariton laser and amplifier based on a ZnO waveguide
Light: Science & Applications (2018)


