Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microstructure and viscoelasticity of confined semiflexible polymer networks

Abstract

The rapidly decreasing dimensions of many technological devices have spurred interest in confinement effects1. Long before, living organisms invented ingenious ways to cope with the requirement of space-saving designs down to the cellular level. Typical length scales in cells range from nanometres to micrometres so that the polymeric constituents of the cytoskeleton are often geometrically confined. Hence, the mechanical response of polymers to external confinement has potential implications both for technology and for our understanding of biological systems alike. Here we report a study of in vitro polymerized filamentous actin confined to emulsion droplets. We correlate observations of the microstructure, local rheological properties and single-filament fluctuations. Enforcing progressively narrower confinement is found to induce a reduction of polymer fluctuations, network stiffening, structural heterogeneities and eventually cortex formation. We argue that the structural and mechanical effects can be consistently explained by a gradual suppression of single-polymer eigenmodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin solutions encapsulated in sufficiently small emulsion droplets are locally more heterogeneous and more elastic than bulk solutions.
Figure 2: Confinement of actin networks into bio mimetic microcavities of diameters less than the average length of the actin filaments decreases the thermal contour undulations and increases the local network elasticity measured by microscopy and active microrheometry, respectively.

Similar content being viewed by others

References

  1. Kassner, M. E. et al. New directions in mechanics. Mech. Mater. 37, 231–259 (2005).

    Article  Google Scholar 

  2. Eisenriegler, E. Universal density-force relations for polymers near a repulsive wall. Phys. Rev. E 55, 3116–3123 (1997).

    Article  ADS  Google Scholar 

  3. Hu, H. W. & Granick, S. Viscoelastic dynamics of confined polymer melts. Science 258, 1339–1342 (1992).

    Article  ADS  Google Scholar 

  4. Luengo, G., Schmitt, F. J., Hill, R. & Israelachvili, J. Thin film rheology and tribology of confined polymer melts: Contrasts with bulk properties. Macromolecules 30, 2482–2494 (1997).

    Article  ADS  Google Scholar 

  5. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    Article  ADS  Google Scholar 

  6. Shin, J. H., Gardel, M. L., Mahadevan, L., Matsudaira, P. & Weitz, D. A. Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro. Proc. Natl Acad. Sci. USA 101, 9636–9641 (2004).

    Article  ADS  Google Scholar 

  7. Helfer, E. et al. Microrheology of biopolymer-membrane complexes. Phys. Rev. Lett. 85, 457–460 (2000).

    Article  ADS  Google Scholar 

  8. Limozin, L. & Sackmann, E. Polymorphism of cross-linked actin networks in giant vesicles. Phys. Rev. Lett. 89, 168103 (2002).

    Article  ADS  Google Scholar 

  9. Limozin, L., Barmann, M. & Sackmann, E. On the organization of self-assembled actin networks in giant vesicles. Eur. Phys. J. E 10, 319–330 (2003).

    Article  Google Scholar 

  10. Hinner, B., Tempel, M., Sackmann, E., Kroy, K. & Frey, E. Entanglement, elasticity, and viscous relaxation of actin solutions. Phys. Rev. Lett. 81, 2614–2617 (1998).

    Article  ADS  Google Scholar 

  11. Gittes, F. & MacKintosh, F. C. Dynamic shear modulus of a semiflexible polymer network. Phys. Rev. E 58, R1241–R1244 (1998).

    Article  ADS  Google Scholar 

  12. Morse, D. C. Viscoelasticity of tightly entangled solutions of semiflexible polymers. Phys. Rev. E 58, R1237–R1240 (1998).

    Article  ADS  Google Scholar 

  13. Kroy, K. Elasticity, dynamics and relaxation in biopolymer networks. Curr. Opin. Colloid Interface Sci. published online 20 December 2005 (doi:10.1016/j.cocis.2005.10.001).

  14. Mackintosh, F. C., Kas, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995).

    Article  ADS  Google Scholar 

  15. Gardel, M. L. et al. Scaling of F-actin network rheology to probe single filament elasticity and dynamics. Phys. Rev. Lett. 93, 188102 (2004).

    Article  ADS  Google Scholar 

  16. Isambert, H. et al. Flexibility of actin-filaments derived from thermal fluctuations—effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J. Biol. Chem. 270, 11437–11444 (1995).

    Article  Google Scholar 

  17. Morse, D. C. Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response. Macromolecules 31, 7044–7067 (1998).

    Article  ADS  Google Scholar 

  18. Odijk, T. DNA in a liquid-crystalline environment: Tight bends, rings, supercoils. J. Chem. Phys. 105, 1270–1286 (1996).

    Article  ADS  Google Scholar 

  19. Noireaux, V. & Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl Acad. Sci. USA 101, 17669–17674 (2004).

    Article  ADS  Google Scholar 

  20. Wilhelm, J. & Frey, E. Elasticity of stiff polymer networks. Phys. Rev. Lett. 91, 108103 (2003).

    Article  ADS  Google Scholar 

  21. Head, D. A., Levine, A. J. & MacKintosh, F. C. Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys. Rev. E 68, 061907 (2003).

    Article  ADS  Google Scholar 

  22. Heussinger, C. & Frey, E. Stiff polymers, foams and fiber networks. Phys. Rev. Lett. 96, 017802 (2006).

    Article  ADS  Google Scholar 

  23. Janmey, P. A. et al. The mechanical-properties of actin gels — elastic-modulus and filament motions. J. Biol. Chem. 269, 32503–32513 (1994).

    Google Scholar 

  24. Schilling, J., Sackmann, E. & Bausch, A. R. Digital imaging processing for biophysical applications. Rev. Sci. Instrum. 75, 2822–2827 (2004).

    Article  ADS  Google Scholar 

  25. Schmidt, C. F., Barmann, M., Isenberg, G. & Sackmann, E. Chain dynamics, mesh size, and diffusive transport in networks of polymerized actin—a quasielastic light-scattering and microfluorescence study. Macromolecules 22, 3638–3649 (1989).

    Article  ADS  Google Scholar 

  26. Valentine, M. T. et al. Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys. Rev. E 64, 061506 (2001).

    Article  ADS  Google Scholar 

  27. Wong, I. Y. et al. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys. Rev. Lett. 92, 178101 (2004).

    Article  ADS  Google Scholar 

  28. Gardel, M. L., Valentine, M. T., Crocker, J. C., Bausch, A. R. & Weitz, D. A. Microrheology of entangled F-actin solutions. Phys. Rev. Lett. 91, 158302 (2003).

    Article  ADS  Google Scholar 

  29. Keller, M., Schilling, J. & Sackmann, E. Oscillatory magnetic bead rheometer for complex fluid microrheometry. Rev. Sci. Instrum. 72, 3626–3634 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Rusp for the actin preparation. We are grateful for the discussions with E. Frey, C. Heussinger and M. Bathe. The work was supported by SFB563 and SFB 413 and partly by the ‘Fonds der Chemischen Industrie’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Bausch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claessens, M., Tharmann, R., Kroy, K. et al. Microstructure and viscoelasticity of confined semiflexible polymer networks. Nature Phys 2, 186–189 (2006). https://doi.org/10.1038/nphys241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing