Abstract
Topological superconductors that support Majorana fermions have been predicted when one-dimensional semiconducting wires are coupled to a superconductor1,2,3. Such excitations are expected to exhibit non-Abelian statistics and can be used to realize quantum gates that are topologically protected from local sources of decoherence4,5. Here we report the observation of the fractional a.c. Josephson effect in a hybrid semiconductor–superconductor InSb/Nb nanowire junction, a hallmark of topological matter. When the junction is irradiated with a radiofrequency f0 in the absence of an external magnetic field, quantized voltage steps (Shapiro steps) with a height Δ V = h f0/2e are observed, as is expected for conventional superconductor junctions, where the supercurrent is carried by charge- 2e Cooper pairs. At high magnetic fields the height of the first Shapiro step is doubled to h f0/e, suggesting that the supercurrent is carried by charge- e quasiparticles. This is a unique signature of the Majorana fermions, predicted almost 80 years ago6.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nature Phys. 7, 412–417 (2011).
Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001).
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Majorana, E. Symmetrical theory of electrons and positrons. Nuovo Cimento. 14, 171–184 (1937).
Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928).
Wilczek, F. Majorana returns. Nature Phys. 5, 614–618 (2009).
Cho, A. The sterile neutrino: Fertile concept or dead end? Science 334, 304–306 (2011).
Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).
Sengupta, K., Žutić, I., Kwon, H-J., Yakovenko, V. M. & Das Sarma, S. Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors. Phys. Rev. B 63, 144531 (2001).
Das Sarma, S., Nayak, C. & Tewari, S. Proposal to stabilize and detect half-quantum vortices in strontium ruthenate thin films: Non-abelian braiding statistics of vortices in a p x+i p y superconductor. Phys. Rev. B 73, 220502 (2006).
Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).
Fu, L. & Kane, C. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).
Sau, J., Lutchyn, R., Tewari, S. & Das Sarma, S. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).
Quay, C. et al. Observation of a one-dimensional spin–orbit gap in a quantum wire. Nature Phys. 6, 336–339 (2010).
Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).
Lutchyn, R. M., Stanescu, T. & Sarma, S. D. Search for Majorana fermions in multiband semiconducting nanowires. Phys. Rev. Lett. 106, 127001 (2011).
Potter, A. C. & Lee, P. A. Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films. Phys. Rev. Lett. 105, 227003 (2010).
Stanescu, T., Lutchyn, R. M. & Sarma, S. D. Majorana fermions in semiconductor nanowires. Phys. Rev. B 84, 144522 (2011).
Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).
Sau, J. D., Tewari, S., Lutchyn, R., Stanescu, T. & Sarma, S. D. Non-abelian quantum order in spin–orbit-coupled semiconductors: The search for topological Majorana particles in solid state systems. Phys. Rev. B 82, 214509 (2010).
Koren, G., Kirzhner, T., Lahoud, E., Chashka, K. B. & Kanigel, A. Proximity-induced superconductivity in topological Bi2Te2Se and Bi2Se3 films: Robust zero-energy bound state possibly due to Majorana fermions. Phys. Rev. B 84, 224521 (2011).
Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).
Deng, M. T. et al. Observation of Majorana fermions in a Nb-InSb nanowire-Nb hybrid quantum device. Preprint at http://arxiv.org/abs/1204.4130 (2012).
Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).
Rokhinson, L. P., Guo, L. J., Chou, S. Y. & Tsui, D. C. Kondo-like zero-bias anomaly in electronic transport through an ultrasmall Si quantum dot. Phys. Rev. B 60, R16319–R16321 (1999).
Cronenwett, S. M. et al. Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like correlated state in an open system. Phys. Rev. Lett. 88, 226805 (2002).
Rokhinson, L., Pfeiffer, L. & West, K. Spontaneous spin polarization in quantum point contacts. Phys. Rev. Lett. 96, 156602 (2006).
Kwon, H-J., Sengupta, K. & Yakovenko, V. Fractional a.c. Josephson effect in p- and d-wave superconductors. Eur. Phys. J. B 37, 349–361 (2003).
Fu, L. & Kane, C. L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408 (2009).
Akhmerov, A. R., Dahlhaus, J. P., Hassler, F., Wimmer, M. & Beenakker, C. W. J. Quantized conductance at the Majorana phase transition in a disordered superconducting wire. Phys. Rev. Lett. 106, 057001 (2011).
Sau, J. D., Tewari, S. & Das Sarma, S. Experimental and materials considerations for the topological superconducting state in electron and hole doped semiconductors: searching for non-Abelian Majorana modes in 1D nanowires and 2D heterostructures. Phys. Rev. B 85, 064512 (2012).
Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1996).
Andreev, A. Thermal conductivity of the intermediate state of superconductors. Zh. Eksp. Teor. Fiz. 46, 1823–1828 (1964).
Doh, Y-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).
Shapiro, S. Josephson currents in superconducting tunnelling: The effect of microwaves and other observations. Phys. Rev. Lett. 11, 80–82 (1963).
Likharev, K. K. Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishing, 1984).
Jiang, L. et al. Unconventional Josephson signatures of Majorana bound states. Phys. Rev. Lett. 107, 236401 (2011).
Pikulin, D. I. & Nazarov, Y. V. Phenomenology and dynamics of Majorana Josephson junction. Preprint at http://arxiv.org/abs/1112.6368 (2011).
San-Jose, P., Prada, E. & Aguado, R. AC Josephson effect in finite-length nanowire junctions with Majorana modes. Phys. Rev. Lett. 108, 257001 (2011).
Domínguez, F., Hassler, F. & Platero, G. On the dynamical detection of Majorana fermions in current-biased nanowires. Preprint at http://arxiv.org/abs/1202.0642 (2012).
Acknowledgements
The work was partially supported by ARO grant W911NF-09-1-0498 (L.P.R.) and by NSF grant DMR10-05851 (J.K.F., X.L.). L.P.R. benefited from discussions with Roman Lutchyn.
Author information
Authors and Affiliations
Contributions
L.P.R. conceived and performed the experiments; J.K.F. and X.L. designed and grew the heterostructures; all authors contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 7541 kb)
Rights and permissions
About this article
Cite this article
Rokhinson, L., Liu, X. & Furdyna, J. The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles. Nature Phys 8, 795–799 (2012). https://doi.org/10.1038/nphys2429
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2429
This article is cited by
-
Hosohedral nodal-line superconductivity in hexagonal ABC Dirac semimetals
Communications Physics (2024)
-
Dirac-fermion-assisted interfacial superconductivity in epitaxial topological-insulator/iron-chalcogenide heterostructures
Nature Communications (2023)
-
In search of Majorana
Nature Physics (2023)
-
Recent progress on Majorana in semiconductor-superconductor heterostructures—engineering and detection
Science China Physics, Mechanics & Astronomy (2023)
-
Fusion of Majorana bound states with mini-gate control in two-dimensional systems
Nature Communications (2022)


