Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hard superconductivity of a soft metal in the quantum regime

Abstract

Superconductivity is inevitably suppressed in reduced dimensionality1,2,3,4,5,6,7,8,9. Questions of how thin superconducting wires or films can be before they lose their superconducting properties have important technological ramifications and go to the heart of understanding coherence and robustness of the superconducting state in quantum-confined geometries1,2,3,4,5,6,7,8,9. Here, we exploit quantum confinement of itinerant electrons in a soft metal, Pb, to stabilize superconductors with lateral dimensions of the order of a few millimetres and vertical dimensions of only a few atomic layers10. These extremely thin superconductors show no indication of defect- or fluctuation-driven suppression of superconductivity, and sustain supercurrents of up to 10% of the depairing current density. Their magnetic hardness implies a Bean-like critical state with strong vortex pinning that is attributed to quantum trapping of vortices. This study paints a conceptually appealing, elegant picture of a model nanoscale superconductor with calculable critical-state properties and surprisingly strong phase coherence. It indicates the intriguing possibility of exploiting robust superconductivity at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equilibrium superconductive properties of ultrathin, atomically flat Pb films.
Figure 2: Scanning tunnelling microscopy images and the corresponding d.c. magnetization loops.
Figure 3: Critical current density of 7 and 9 ML thick Pb films.
Figure 4: Cole–Cole plot of real and imaginary diamagnetic susceptibility, and a plot showing current decay with time.

Similar content being viewed by others

References

  1. Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979).

    Article  ADS  Google Scholar 

  2. Haviland, D. B., Liu, Y. & Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989).

    Article  ADS  Google Scholar 

  3. Yazdani, A. & Kapitulnik, A. Superconducting-insulating transition in two-dimensional a-MoGe thin films. Phys. Rev. Lett. 74, 3037–3040 (1995).

    Article  ADS  Google Scholar 

  4. Goldman, A. M. & Marković, N. Superconductor-insulator transitions in the two-dimensional limit. Phys. Today 11, 39–44 (1998).

    Article  Google Scholar 

  5. Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000).

    Article  ADS  Google Scholar 

  6. Guo, Y. et al. Superconductivity modulated by quantum size effects. Science 306, 1915–1917 (2004).

    Article  ADS  Google Scholar 

  7. Zgirski, M., Riikonen, K.-P., Toubolotsev, V. & Arutyunov, K. Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett. 5, 1029–1033 (2005).

    Article  ADS  Google Scholar 

  8. Skvortsov, M. A. & Feigel’man, M. V. Superconductivity in disordered thin films: giant mesoscopic fluctuations. Phys. Rev. Lett. 95, 057002 (2005).

    Article  ADS  Google Scholar 

  9. Hermele, M., Refael, G., Fisher, M. P. A. & Goldbart, P. M. Fate of the Josephson effect in thin-film superconductors. Nature Phys. 1, 117–121 (2005).

    Article  ADS  Google Scholar 

  10. Zhang, Z. Y., Niu, Q. & Shih, C.-K. Electronic growth of metallic overlayers on semiconductor substrates. Phys. Rev. Lett. 80, 5381–5384 (1998).

    Article  ADS  Google Scholar 

  11. Özer, M. M., Jia, Y., Wu, B., Zhang, Z. Y. & Weitering, H. H. Quantum stability and reentrant bilayer-by-bilayer growth of atomically smooth Pb films on semiconductor substrates. Phys. Rev. B 72, 113409 (2005).

    Article  ADS  Google Scholar 

  12. Budde, K., Abram, E., Yeh, V. & Tringides, M. C. Uniform, self-organized, seven-step height Pb/Si(111)-(7×7) islands at low temperatures. Phys. Rev. B 61, R10602–R10605 (2000).

    Article  ADS  Google Scholar 

  13. Su, W. B. et al. Correlation between quantized electronic states and oscillatory thickness relaxations of 2D Pb islands on Si(111)-(7×7) surfaces. Phys. Rev. Lett. 86, 5116–5119 (2001).

    Article  ADS  Google Scholar 

  14. Okamoto, H., Chen, D. & Yamada, T. Competing classical and quantum effects in shape relaxation of a metallic island. Phys. Rev. Lett. 89, 256101 (2002).

    Article  ADS  Google Scholar 

  15. Mans, A., Dil, J. H., Ettema, A. R. H. F. & Weitering, H. H. Quantum electronic stability and spectroscopy of ultrathin Pb films on Si(111) 7×7 . Phys. Rev. B 66, 195410 (2002).

    Article  ADS  Google Scholar 

  16. Jiang, C.-S. et al. Building Pb nanomesas with atomic-layer precision. Phys. Rev. Lett. 92, 106104 (2004).

    Article  ADS  Google Scholar 

  17. Upton, M., Wei, C. M., Chou, M. Y., Miller, T. & Chiang, T.-C. Thermal stability and electronic structure of atomically uniform Pb films on Si(111). Phys. Rev. Lett. 93, 026802 (2004).

    Article  ADS  Google Scholar 

  18. Feng, R., Conrad, E. H., Tringides, M. C., Kim, C. & Miceli, P. F. Wetting-layer transformation for Pb nanocrystals grown on Si(111). Appl. Phys. Lett. 85, 3866–3868 (2004).

    Article  ADS  Google Scholar 

  19. Simonin, J. Surface term in the superconductive Ginzburg-Landau free energy: Application to thin films. Phys. Rev. B 33, 7830–7832 (1986).

    Article  ADS  Google Scholar 

  20. Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, New York, 1996).

    Google Scholar 

  21. Bulaevskii, L. N. Inhomogeneous state and the anisotropy of the upper critical field in layered superconductors with Josephson layer interaction. Sov. Phys. JETP 38, 634–639 (1974).

    ADS  Google Scholar 

  22. Takahashi, S. & Tachiki, M. Theory of the upper critical field of superconducting superlattices. Phys. Rev. B 33, 4620–4631 (1986).

    Article  ADS  Google Scholar 

  23. Gvozdikov, V. M. A crossover in the temperature behavior of the perpendicular upper critical magnetic field of layered superconductors and thin films. Low. Temp. Phys. 25, 936–942 (1999).

    Article  ADS  Google Scholar 

  24. Bean, C. P. Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962).

    Article  ADS  Google Scholar 

  25. Clem, J. R. & Sanchez, A. Hysteretic ac losses and susceptibility of thin superconducting disks. Phys. Rev. B 50, 9355–9362 (1994).

    Article  ADS  Google Scholar 

  26. Brandt, E. H. Susceptibility of superconductor disks and rings with and without flux creep. Phys. Rev. B 55, 14513–14526 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  27. Nelson, D. R. & Vinokur, V. M. Boson localization and correlated pinning of superconducting vortex arrays. Phys. Rev. B 48, 13060–13097 (1993).

    Article  ADS  Google Scholar 

  28. Thompson, J. R. et al. Vortex pinning and slow creep in high-J(c) MgB2 thin films: a magnetic and transport study. Supercond. Sci. Technol. 18, 970 (2005).

    Article  ADS  Google Scholar 

  29. Gurevich, A. & Brandt, E. H. Flux creep in superconducting films: An exact solution. Phys. Rev. Lett. 73, 178–181 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with L. Bulaevskii, A. Gurevich, V. G. Kogan, Q. Niu, and Z. Zhang. This work was funded primarily by the National Science Foundation under Contract No. DMR-0244570, and sponsored in part by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James R. Thompson or Hanno H. Weitering.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özer, M., Thompson, J. & Weitering, H. Hard superconductivity of a soft metal in the quantum regime. Nature Phys 2, 173–176 (2006). https://doi.org/10.1038/nphys244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing