Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heralded noiseless amplification of a photon polarization qubit

Abstract

Photons are the best long-range carriers of quantum information, but the unavoidable absorption and scattering in a transmission channel places a serious limitation on viable communication distances. Signal amplification will therefore be an essential feature of quantum technologies, with direct applications to quantum communication, metrology and fundamental tests of quantum theory. Non-deterministic noiseless amplification of a single mode1,2,3,4,5 can circumvent the challenges related to amplifying a quantum signal, such as the no-cloning theorem6 and the minimum noise cost for deterministic quantum state amplification7. However, existing devices are not suitable for amplifying the fundamental optical quantum information carrier: a qubit coherently encoded across two optical modes. Here, we construct a coherent two-mode amplifier to demonstrate the first heralded noiseless linear amplification of a qubit encoded in the polarization state of a single photon. In doing so, we increase the transmission fidelity of a realistic qubit channel by up to a factor of five. Qubit amplifiers promise to extend the range of secure quantum communication8,9 and other quantum information science and technology protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual and experimental representations of the qubit amplifier circuit.
Figure 2: States of the qubit subspace before and after the amplifier.
Figure 3: Absolute values of the ρin and ρout density matrices.

Similar content being viewed by others

References

  1. Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N. & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nature Photon. 4, 316–319 (2010).

    Article  Google Scholar 

  2. Ferreyrol, F. et al. Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603 (2010).

    Article  ADS  Google Scholar 

  3. Zavatta, A., Fiurášek, J. & Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nature Photon. 5, 52–60 (2010).

    Article  ADS  Google Scholar 

  4. Usuga, M. A. et al. Noise-powered probabilistic concentration of phase information. Nature Phys. 6, 767–771 (2010).

    Article  ADS  Google Scholar 

  5. Osorio, C. I. et al. Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012).

    Article  ADS  Google Scholar 

  6. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    Article  ADS  Google Scholar 

  7. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  8. Gisin, N., Pironio, S. & Sangouard, N. Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010).

    Article  ADS  Google Scholar 

  9. Minar, J., de Riedmatten, H. & Sangouard, N. Quantum repeaters based on heralded qubit amplifiers. Phys. Rev. A 85, 032313 (2012).

    Article  ADS  Google Scholar 

  10. Nielsen, M. N. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  11. Shaji, A. & Caves, C. M. Qubit metrology and decoherence. Phys. Rev. A 76, 032111 (2008).

    Article  ADS  Google Scholar 

  12. Gao, W-B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nature Phys. 6, 331–335 (2010).

    Article  ADS  Google Scholar 

  13. Kwiat, P. G., Eberhard, P. H., Steinberg, A. M. & Chiao, R. Y. Proposal for a loophole-free Bell inequality experiment. Phys. Rev. A 49, 3209–3220 (1994).

    Article  ADS  Google Scholar 

  14. Pitkaens, D., Ma, X., Wickert, R., van Loock, P. & Lütkenhaus, N. Efficient heralding of photonics quits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011).

    Article  ADS  Google Scholar 

  15. Kok, P., Lee, H. & Dowling, J. P. Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66, 063814 (2002).

    Article  ADS  Google Scholar 

  16. Blandino, R. et al. Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327 (2012).

    Article  ADS  Google Scholar 

  17. Mičuda, M. et al. Noiseless loss suppression in quantum optical communication. Phys. Rev. Lett. Preprint at http://arxiv.org/pdf/1206.2852.pdf (2012).

  18. Bennett, C. H. & Brassard, G. Proc. IEEE Int. Conf. Computers, Systems and Signal Processing Bangalore, India 175 (IEEE, 1984).

    Google Scholar 

  19. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  20. Pegg, D. T., Phillips, L. S. & Barnett, S. M. Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604–1606 (1998).

    Article  ADS  Google Scholar 

  21. Babichev, S. A., Ries, J. & Lvovsky, A. I. Quantum scissors: Teleportation of single-mode optical states by means of a nonlocal single photon. Europhys. Lett. 64, 1–7 (2003).

    Article  ADS  Google Scholar 

  22. White, A. G. et al. Measuring two-qubit gates. J. Opt. Soc. Am. B 24, 172–183 (2007).

    Article  ADS  Google Scholar 

  23. Berry, D. W. & Lvovsky, A. I. Preservation of loss in linear-optical processing. Phys. Rev. A 84, 042304 (2011).

    Article  ADS  Google Scholar 

  24. Tanida, M., Okamoto, R. & Takeuchi, S. Highly indistinguishable heralded single-photon sources using parametric down conversion. Opt. Express 20, 15275–15285 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was conducted by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Project number CE110001027). S.K. thanks D. J. Saunders and M. J. W. Hall for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

G.J.P. and T.C.R. conceived and managed the project. S.K. built and conducted the experiment with assistance from G.Y.X. and G.J.P. S.K. analysed the data with assistance from G.J.P. All authors contributed to the theory and writing of the manuscript.

Corresponding author

Correspondence to G. J. Pryde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocsis, S., Xiang, G., Ralph, T. et al. Heralded noiseless amplification of a photon polarization qubit. Nature Phys 9, 23–28 (2013). https://doi.org/10.1038/nphys2469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing