Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Room-temperature entanglement between single defect spins in diamond

Abstract

Entanglement is the central yet fleeting phenomenon of quantum physics. Once being considered a peculiar counter-intuitive property of quantum theory1, it has developed into the most central element of quantum technology. Consequently, there have been a number of experimental demonstrations of entanglement between photons2, atoms3, ions4 and solid-state systems such as spins or quantum dots5,6,7, superconducting circuits8,9 and macroscopic diamond10. Here we experimentally demonstrate entanglement between two engineered single solid-state spin quantum bits (qubits) at ambient conditions. Photon emission of defect pairs reveals ground-state spin correlation. Entanglement (fidelity = 0.67±0.04) is proved by quantum state tomography. Moreover, the lifetime of electron spin entanglement is extended to milliseconds by entanglement swapping to nuclear spins. The experiments mark an important step towards a scalable room-temperature quantum device being of potential use in quantum information processing as well as metrology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NV pair characteristics.
Figure 2: Bell state tomography.
Figure 3: Two-photon correlation measurements.
Figure 4: Entanglement storage in 15N.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 0777–0780 (1935).

    Article  ADS  Google Scholar 

  2. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment—A new violation of Bell inequalitites. Phys. Rev. Lett. 49, 91–94 (1982).

    Article  ADS  Google Scholar 

  3. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  4. Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    Article  ADS  Google Scholar 

  5. Simmons, S. et al. Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011).

    Article  ADS  Google Scholar 

  6. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    Article  ADS  Google Scholar 

  7. Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202–205 (2012).

    Article  ADS  Google Scholar 

  8. Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010).

    Article  ADS  Google Scholar 

  9. DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

    Article  ADS  Google Scholar 

  10. Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    Article  ADS  Google Scholar 

  11. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  12. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article  ADS  Google Scholar 

  13. Shi, F. et al. Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. Phys. Rev. Lett. 105, 040504 (2010).

    Article  ADS  Google Scholar 

  14. Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid state qubits. Nature Phys. 9, 29–33 (2012) Advance online publication.

    Article  ADS  Google Scholar 

  15. Childress, L., Taylor, J. M., Sorensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006).

    Article  ADS  Google Scholar 

  16. Rabl, P. et al. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Phys. 6, 602–608 (2010).

    Article  ADS  Google Scholar 

  17. Yao, N. Y. et al. Scalable architecture for a room temperature solid-state quantum information processor. Nature Commun. 3 (2012).

  18. Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon. 3, 144–147 (2009).

    Article  ADS  Google Scholar 

  19. Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nature Photon. 5, 397–405 (2011).

    Article  ADS  Google Scholar 

  20. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  21. Pezzagna, S. et al. Creation of colour centres in diamond by collimated ion-implantation through nano-channels in mica. Phys. Status Solidi A 208, 2017–2022 (2011).

    Article  ADS  Google Scholar 

  22. Neumann, P. et al. Quantum register based on coupled electron spins in a room-temperature solid. Nature Phys. 6, 249–253 (2010).

    Article  ADS  Google Scholar 

  23. Vedral, V., Plenio, M. B., Rippin, M. A. & Knight, P. L. Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  24. Ollerenshaw, J. E., Lidar, D. A. & Kay, L. E. Magnetic resonance realization of decoherence-free quantum computation. Phys. Rev. Lett. 91, 217904 (2003).

    Article  ADS  Google Scholar 

  25. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  26. Waldherr, G. et al. High-dynamic-range magnetometry with a single nuclear spin in diamond. Nature Nanotech. 7, 105–108 (2012).

    Article  ADS  Google Scholar 

  27. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  28. Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

    Article  ADS  Google Scholar 

  29. Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    Article  ADS  Google Scholar 

  30. Ofori-Okai, B. K. et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406(R) (2012).

    Article  ADS  Google Scholar 

  31. Bernien, H et al. Heralded entanglement between solid-state qubits separated by 3 meters. Preprint at http://arxiv.org/abs/1212.6136 (2012).

Download references

Acknowledgements

The authors would like to acknowledge financial support by the EU through SQUTEC and Diamant, as well as the DFG through SFB/TR21, the research groups 1493 ‘Diamond quantum materials’ and 1482 as well as the Volkswagen Foundation. We thank Y. Wang, R. Kolesov, R. Stöhr, G. Waldherr, S. Steinert, T. Staudacher, J. Michl, C. Burk, E6, J. Biamonte, H. Fedder, F. Reinhard and F. Shi for discussions and support.

Author information

Authors and Affiliations

Authors

Contributions

F.D., I.J. and B.N. carried out the experiments. S.P., C.T. and J.M. prepared implantation masks and samples. P.N., F.J. and J.W. supervised experiments. N.Z. analysed experimental data. F.D., P.N., I.J. and J.W. wrote the paper.

Corresponding authors

Correspondence to F. Dolde or B. Naydenov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2500 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolde, F., Jakobi, I., Naydenov, B. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys 9, 139–143 (2013). https://doi.org/10.1038/nphys2545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing