Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cold-atom random laser

Abstract

In conventional lasers optical cavities are used to provide feedback to gain media. Mirrorless lasers can be built by using disordered structures to induce multiple scattering, which increases the path length in the medium, providing the necessary feedback1. Interestingly, light or microwave amplification by stimulated emission also occurs naturally in stellar gases2,3,4 and planetary atmospheres5,6. The possibility of additional scattering-induced feedback4,7—random lasing8,9,10,11,12,13,14—could explain the unusual properties of some space masers15. Here, we report experimental evidence of random lasing in a controlled, cold atomic vapour, taking advantage of Raman gain. By tuning the gain frequency in the vicinity of a scattering resonance, we observe an enhancement of the light emission due to random lasing. The unique possibility to both control the experimental parameters and to model the microscopic response of our system provides an ideal test bench for better understanding natural lasing sources, in particular the role of resonant scattering feedback in astrophysical lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Working principle of the random laser.
Figure 2: Fluorescence measurement.
Figure 3: Random laser emission around δ = 0.

Similar content being viewed by others

References

  1. Letokhov, V. S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 16, 835–840 (1968).

    ADS  Google Scholar 

  2. Weaver, H., Williams, D. R. W., Dieter, N. H. & Lum, W. T. Observations of a strong unidentified microwave line and of emission from the OH molecule. Nature 208, 29–31 (1965).

    Article  ADS  Google Scholar 

  3. Letokhov, V. S. Laser action in stellar atmospheres. IEEE J. Quantum Electron. 8, 615 (1972).

    Article  ADS  Google Scholar 

  4. Letokhov, V. S. & Johansson, S. Astrophysical Lasers (Oxford Univ. Press, 2009).

    Google Scholar 

  5. Johnson, M. A., Betz, M. A., McLaren, R. A., Sutton, E. C. & Townes, C. H. Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus. ApJ 208, L145–L148 (1976).

    Article  ADS  Google Scholar 

  6. Mumma, M. J. et al. Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: A natural laser. Science 212, 45–49 (1981).

    Article  ADS  Google Scholar 

  7. Lavrinovich, N. N. & Letokhov, V. S. The possibility of the laser effect in stellar atmospheres. Sov. Phys. JETP 40, 800–805 (1975).

    ADS  Google Scholar 

  8. Markushev, V. M., Zolin, V. F. & Briskina, C. M. Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders. Sov. J. Quantum Electron. 16, 281–282 (1986).

    Article  ADS  Google Scholar 

  9. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).

    Article  ADS  Google Scholar 

  10. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).

    Article  ADS  Google Scholar 

  11. Wiersma, D. S. & Cavalieri, S. A temperature-tunable random laser. Nature 414, 708–709 (2001).

    Article  ADS  Google Scholar 

  12. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  13. Wiersma, D. S. & Noginov, M. A. Special issue on Nano and random laser. J. Opt. 12, 020201 (2010).

    Article  ADS  Google Scholar 

  14. Wiersma, D. S. Disordered photonics. Nature Photon. 7, 188–196 (2013).

    Article  ADS  Google Scholar 

  15. Truitt, P. & Strelnitski, V. Transition to oscillation regime in flaring water vapour masers. Bull. Am. Astron. Soc. 32, 1484 (2000).

    ADS  Google Scholar 

  16. Labeyrie, G. et al. Slow diffusion of light in a cold atomic cloud. Phys. Rev. Lett. 91, 223904 (2003).

    Article  ADS  Google Scholar 

  17. Labeyrie, G., Delande, D., Müller, C. A., Miniature, C. & Kaiser, R. Multiple scattering of light in a resonant medium. Opt. Commun. 243, 157–164 (2004).

    Article  ADS  Google Scholar 

  18. McKeever, J., Boca, A., Boozer, A. D., Buck, J. R. & Kimble, H. J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003).

    Article  ADS  Google Scholar 

  19. Guerin, W., Michaud, F. & Kaiser, R. Mechanisms for lasing with cold atoms as the gain medium. Phys. Rev. Lett. 101, 093002 (2008).

    Article  ADS  Google Scholar 

  20. Vrijsen, G., Hosten, O., Lee, J., Bernon, S. & Kasevich, M. A. Raman Lasing with a Cold Atom Gain Medium in a High-Finesse Optical Cavity. Phys. Rev. Lett. 107, 063904 (2011).

    Article  ADS  Google Scholar 

  21. Bohnet, J. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012).

    Article  ADS  Google Scholar 

  22. Schilke, A., Zimmermann, C., Courteille, Ph. W. & Guerin, W. Optical parametric oscillation with distributed feedback in cold atoms. Nature Photon. 6, 101–104 (2011).

    Article  ADS  Google Scholar 

  23. Froufe-Pérez, L. S., Guerin, W., Carminati, R. & Kaiser, R. Threshold of a random laser with cold atoms. Phys. Rev. Lett. 102, 173903 (2009).

    Article  ADS  Google Scholar 

  24. Guerin, W., Mercadier, N., Brivio, D. & Kaiser, R. Threshold of a random laser based on Raman gain in cold atoms. Opt. Express 17, 11236–11245 (2009).

    Article  ADS  Google Scholar 

  25. Guerin, W. et al. Towards a random laser with cold atoms. J. Opt. 12, 024002 (2010).

    Article  ADS  Google Scholar 

  26. Baudouin, Q., Mercadier, N. & Kaiser, R. Steady-state signatures of radiation trapping by cold multilevel atoms. Phys. Rev. A 87, 013412 (2013).

    Article  ADS  Google Scholar 

  27. Goetschy, A. & Skipetrov, S. E. Euclidean matrix theory of random lasing in a cloud of cold atoms. Europhys. Lett. 96, 34005 (2011).

    Article  ADS  Google Scholar 

  28. Türeci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).

    Article  ADS  Google Scholar 

  29. Conti, C. & Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nature Phys. 4, 794–798 (2008).

    Article  ADS  Google Scholar 

  30. Dravins, D. in High Time Resolution Astrophysics (eds Phelan, D., Ryan, O. & Shearer, A.) 95–132 (Astrophysics and Space Science Library, Vol. 351, Springer, 2008).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from ANR (project ANR-06-BLAN-0096), CG06, PACA, DGA and the Research Executive Agency (programme COSCALI, No. PIRSES-GA-2010-268717). We thank R. Carminati and S. Skipetrov for fruitful discussions, and A. Aspect and S. Tanzilli for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Q.B., N.M. and V.G. carried out the experiment and analysed the data; Q.B., N.M. and R.K. developed the theory; Q.B., W.G. and R.K. wrote the paper; R.K. supervised the project. Q.B. and N.M. contributed equally to the study. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to R. Kaiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudouin, Q., Mercadier, N., Guarrera, V. et al. A cold-atom random laser. Nature Phys 9, 357–360 (2013). https://doi.org/10.1038/nphys2614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2614

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing