Abstract
In conventional lasers optical cavities are used to provide feedback to gain media. Mirrorless lasers can be built by using disordered structures to induce multiple scattering, which increases the path length in the medium, providing the necessary feedback1. Interestingly, light or microwave amplification by stimulated emission also occurs naturally in stellar gases2,3,4 and planetary atmospheres5,6. The possibility of additional scattering-induced feedback4,7—random lasing8,9,10,11,12,13,14—could explain the unusual properties of some space masers15. Here, we report experimental evidence of random lasing in a controlled, cold atomic vapour, taking advantage of Raman gain. By tuning the gain frequency in the vicinity of a scattering resonance, we observe an enhancement of the light emission due to random lasing. The unique possibility to both control the experimental parameters and to model the microscopic response of our system provides an ideal test bench for better understanding natural lasing sources, in particular the role of resonant scattering feedback in astrophysical lasers.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Letokhov, V. S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 16, 835–840 (1968).
Weaver, H., Williams, D. R. W., Dieter, N. H. & Lum, W. T. Observations of a strong unidentified microwave line and of emission from the OH molecule. Nature 208, 29–31 (1965).
Letokhov, V. S. Laser action in stellar atmospheres. IEEE J. Quantum Electron. 8, 615 (1972).
Letokhov, V. S. & Johansson, S. Astrophysical Lasers (Oxford Univ. Press, 2009).
Johnson, M. A., Betz, M. A., McLaren, R. A., Sutton, E. C. & Townes, C. H. Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus. ApJ 208, L145–L148 (1976).
Mumma, M. J. et al. Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: A natural laser. Science 212, 45–49 (1981).
Lavrinovich, N. N. & Letokhov, V. S. The possibility of the laser effect in stellar atmospheres. Sov. Phys. JETP 40, 800–805 (1975).
Markushev, V. M., Zolin, V. F. & Briskina, C. M. Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders. Sov. J. Quantum Electron. 16, 281–282 (1986).
Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).
Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).
Wiersma, D. S. & Cavalieri, S. A temperature-tunable random laser. Nature 414, 708–709 (2001).
Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).
Wiersma, D. S. & Noginov, M. A. Special issue on Nano and random laser. J. Opt. 12, 020201 (2010).
Wiersma, D. S. Disordered photonics. Nature Photon. 7, 188–196 (2013).
Truitt, P. & Strelnitski, V. Transition to oscillation regime in flaring water vapour masers. Bull. Am. Astron. Soc. 32, 1484 (2000).
Labeyrie, G. et al. Slow diffusion of light in a cold atomic cloud. Phys. Rev. Lett. 91, 223904 (2003).
Labeyrie, G., Delande, D., Müller, C. A., Miniature, C. & Kaiser, R. Multiple scattering of light in a resonant medium. Opt. Commun. 243, 157–164 (2004).
McKeever, J., Boca, A., Boozer, A. D., Buck, J. R. & Kimble, H. J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003).
Guerin, W., Michaud, F. & Kaiser, R. Mechanisms for lasing with cold atoms as the gain medium. Phys. Rev. Lett. 101, 093002 (2008).
Vrijsen, G., Hosten, O., Lee, J., Bernon, S. & Kasevich, M. A. Raman Lasing with a Cold Atom Gain Medium in a High-Finesse Optical Cavity. Phys. Rev. Lett. 107, 063904 (2011).
Bohnet, J. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012).
Schilke, A., Zimmermann, C., Courteille, Ph. W. & Guerin, W. Optical parametric oscillation with distributed feedback in cold atoms. Nature Photon. 6, 101–104 (2011).
Froufe-Pérez, L. S., Guerin, W., Carminati, R. & Kaiser, R. Threshold of a random laser with cold atoms. Phys. Rev. Lett. 102, 173903 (2009).
Guerin, W., Mercadier, N., Brivio, D. & Kaiser, R. Threshold of a random laser based on Raman gain in cold atoms. Opt. Express 17, 11236–11245 (2009).
Guerin, W. et al. Towards a random laser with cold atoms. J. Opt. 12, 024002 (2010).
Baudouin, Q., Mercadier, N. & Kaiser, R. Steady-state signatures of radiation trapping by cold multilevel atoms. Phys. Rev. A 87, 013412 (2013).
Goetschy, A. & Skipetrov, S. E. Euclidean matrix theory of random lasing in a cloud of cold atoms. Europhys. Lett. 96, 34005 (2011).
Türeci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).
Conti, C. & Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nature Phys. 4, 794–798 (2008).
Dravins, D. in High Time Resolution Astrophysics (eds Phelan, D., Ryan, O. & Shearer, A.) 95–132 (Astrophysics and Space Science Library, Vol. 351, Springer, 2008).
Acknowledgements
We acknowledge financial support from ANR (project ANR-06-BLAN-0096), CG06, PACA, DGA and the Research Executive Agency (programme COSCALI, No. PIRSES-GA-2010-268717). We thank R. Carminati and S. Skipetrov for fruitful discussions, and A. Aspect and S. Tanzilli for useful comments on the manuscript.
Author information
Authors and Affiliations
Contributions
Q.B., N.M. and V.G. carried out the experiment and analysed the data; Q.B., N.M. and R.K. developed the theory; Q.B., W.G. and R.K. wrote the paper; R.K. supervised the project. Q.B. and N.M. contributed equally to the study. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 475 kb)
Rights and permissions
About this article
Cite this article
Baudouin, Q., Mercadier, N., Guarrera, V. et al. A cold-atom random laser. Nature Phys 9, 357–360 (2013). https://doi.org/10.1038/nphys2614
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2614
This article is cited by
-
Electrically driven random lasing from a modified Fabry–Pérot laser diode
Nature Photonics (2022)
-
Determining random lasing action
Nature Reviews Physics (2019)
-
Turbulence hierarchy in a random fibre laser
Nature Communications (2017)
-
Lasing by driven atoms-cavity system in collective strong coupling regime
Scientific Reports (2017)
-
Multiple scattering dynamics of fermions at an isolated p-wave resonance
Nature Communications (2016)


