Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deterministic quantum teleportation between distant atomic objects

Abstract

Quantum teleportation is a key ingredient in quantum networks1,2 and one of the building blocks for quantum computation3,4. Teleportation between distant material objects using light as the quantum-information carrier has been a particularly exciting goal. Here we propose and demonstrate the deterministic continuous-variable teleportation between distant material objects. The objects are macroscopic atomic ensembles at room temperature. Entanglement required for teleportation is distributed by light propagating from one ensemble to the other. We demonstrate that the experimental fidelity of the quantum teleportation is higher than that achievable by any classical process. Furthermore, we demonstrate the benefits of deterministic teleportation by teleporting a sequence of spin states evolving in time from one distant object onto another. The teleportation protocol is applicable to other important systems, such as mechanical oscillators coupled to light or cold spin ensembles coupled to microwaves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Teleportation experiment.
Figure 2: Teleportation fidelity.
Figure 3: Teleportation of a sequence of spin states.

Similar content being viewed by others

References

  1. Briegel, H-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  2. De Riedmatten, H. et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 47904 (2004).

    Article  ADS  Google Scholar 

  3. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  Google Scholar 

  4. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  5. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  6. Vaidman, L. Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994).

    Article  ADS  Google Scholar 

  7. Bouwmeester, D. et al. A experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  Google Scholar 

  8. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  9. Riebe, M. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 734–737 (2004).

    Article  ADS  Google Scholar 

  10. Barrett, M. D. et al. Deterministic quantum teleportation with atoms. Nature 429, 737–739 (2004).

    Article  ADS  Google Scholar 

  11. Sherson, J. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  ADS  Google Scholar 

  12. Chen, Y. A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

    Article  ADS  Google Scholar 

  13. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    Article  ADS  Google Scholar 

  14. Nölleke, C. et al. Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013).

    Article  ADS  Google Scholar 

  15. Bao, X-H. et al. Quantum teleportation between remote atomic- ensemble quantum memories. Proc. Natl Acad. Sci. USA 109, 20347–20351 (2012).

    Article  ADS  Google Scholar 

  16. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  17. Ma, X. S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    Article  ADS  Google Scholar 

  18. Lee, N. et al. Teleportation of nonclassical wave packets of light. Science 332, 330–333 (2011).

    Article  ADS  Google Scholar 

  19. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    Article  ADS  Google Scholar 

  20. Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011).

    Article  ADS  Google Scholar 

  21. Wasilewski, W. et al. Generation of two-mode squeezed and entangled light in a single temporal and spatial mode. Opt. Exp. 17, 14444–14457 (2009).

    Article  ADS  Google Scholar 

  22. Sherson, J., Julsgaard, B. & Polzik, E. S. Deterministic atom-light quantum interface. Adv. Atom. Mol. Opt. Phys. 54, 81–130 (2006).

    Article  ADS  Google Scholar 

  23. Hammerer, K., Wolf, M. M., Polzik, E. S. & Cirac, J. I. Quantum benchmark for storage and transmission of coherent states. Phys. Rev. Lett. 94, 150503 (2005).

    Article  ADS  Google Scholar 

  24. Muschik, C. A. et al. Robust entanglement generation by reservoir engineering. J. Phys. B 45, 124021 (2012).

    Article  ADS  Google Scholar 

  25. Vasilyev, D. V., Hammerer, K., Korolev, N. & Sørensen, A. S. Quantum noise for Faraday light matter interfaces. J. Phys. B 45, 124007 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions with J. I. Cirac, K. Hammerer and D. V. Vasilyev. This work was supported by the ERC grants INTERFACE and QUAGATUA, the Danish National Science Foundation Center QUANTOP, the DARPA programme QUASAR, the Alexander von Humboldt Foundation, TOQATA (FIS2008-00784) and the EU projects QESSENCE, MALICIA and AQUTE.

Author information

Authors and Affiliations

Authors

Contributions

H.K., D.S., J.M.P., H.S. and T.F. performed the experiment. The theoretical model was developed by C.A.M. H.K, C.A.M., D.S. and E.S.P. wrote the paper. E.S.P. supervised the project.

Corresponding author

Correspondence to E. S. Polzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauter, H., Salart, D., Muschik, C. et al. Deterministic quantum teleportation between distant atomic objects. Nature Phys 9, 400–404 (2013). https://doi.org/10.1038/nphys2631

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing