Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Displacement of entanglement back and forth between the micro and macro domains

Abstract

Quantum theory is often presented as the theory describing the microscopic world, and admittedly, it has done this extremely well for decades. Nonetheless, the question of whether it applies to macroscopic scales remains open, despite many efforts1,2,3. Here, we report on entanglement exhibiting strong analogies with the Schrödinger cat state as it involves two macroscopically distinct states- two states that can be efficiently distinguished using detectors with no microscopic resolution4. Specifically, we start by generating entanglement between two spatial optical modes at the single-photon level and subsequently displace one of these modes up to almost a thousand photons5. To reliably check whether entanglement is preserved, the state is redisplaced back to the single-photon level and a well-established entanglement measure6, based on single-photon detection, is applied. Our results provide a tool to address fundamental questions about quantum theory and hold potential for more applied problems, for instance in quantum sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Measurement results.

Similar content being viewed by others

References

  1. Brune, M. et al. Observing the progressive decoherence of the ‘Meter’ in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996).

    Article  ADS  Google Scholar 

  2. Monroe, C., Meekhof, D. M., King, B. E. & Wineland, D. J. A Schrodinger cat superposition state of an atom. Science 272, 1131–1136 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  3. Turchette, Q. A. et al. Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 62, 053807 (2000).

    Article  ADS  Google Scholar 

  4. Sekatski, P., Sangouard, N. & Gisin, N. The size of quantum superpositions as measured with ‘classical’ detectors. Preprint at http://arxiv.org/abs/1306.0843 (2013).

  5. Sekatski, P. et al. Proposal for exploring macroscopic entanglement with a single photon and coherent states. Phys. Rev. A 86, 060301 (2012).

    Article  ADS  Google Scholar 

  6. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    Article  ADS  Google Scholar 

  7. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  8. Sekatski, P., Sanguinetti, B., Pomarico, E., Gisin, N. & Simon, C. Cloning entangled photons to scales one can see. Phys. Rev. A 82, 053814 (2010).

    Article  ADS  Google Scholar 

  9. Sekatski, P., Brunner, N., Branciard, C., Gisin, N. & Simon, C. Towards quantum experiments with human eyes as detectors based on cloning via stimulated emission. Phys. Rev. Lett. 103, 113601 (2009).

    Article  ADS  Google Scholar 

  10. Spagnolo, N., Vitelli, C., Sciarrino, F. & De Martini, F. Entanglement criteria for microscopic-macroscopic systems. Phys. Rev. A 82, 052101 (2010).

    Article  ADS  Google Scholar 

  11. Spagnolo, N., Vitelli, C., Paternostro, M., De Martini, F. & Sciarrino, F. Hybrid methods for witnessing entanglement in a microscopic-macroscopic system. Phys. Rev. A 84, 032102 (2011).

    Article  ADS  Google Scholar 

  12. De Martini, F. & Sciarrino, F. Investigating macroscopic quantum superpositions and the quantum-to-classical transition by optical parametric amplification. Preprint at http://arxiv.org/abs/1202.5518 (2012).

  13. De Martini, F., Sciarrino, F. & Vitelli, C. Entanglement test on a microscopic-macroscopic system. Phys. Rev. Lett. 100, 253601 (2008).

    Article  ADS  Google Scholar 

  14. Mermin, N. Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin s. Phys. Rev. D 22, 356–361 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  15. Peres, A. Quantum Theory: Concepts and Methods (Klouwer, 2002).

    Book  Google Scholar 

  16. Christ, A., Laiho, K., Eckstein, A., Cassemiro, K. N. & Silberhorn, C. Probing multimode squeezing with correlation functions. New J. Phys. 13, 033027 (2011).

    Article  ADS  Google Scholar 

  17. Asbóth, J., Calsamiglia, J. & Ritsch, H. Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005).

    Article  ADS  Google Scholar 

  18. Solomon Ivan, J., Mukunda, N. & Simon, R. Generation and distillation of non-Gaussian entanglement from nonclassical photon statistics. Quant. Inf. Process. 11, 873–885 (2011).

    Article  MathSciNet  Google Scholar 

  19. Paris, M. G. Displacement operator by beam splitter. Phys. Lett. A 217, 78–80 (1996).

    Article  ADS  Google Scholar 

  20. Lvovsky, A. & Babichev, S. Synthesis and tomographic characterization of the displaced Fock state of light. Phys. Rev. A 66, 1–4 (2002).

    Article  Google Scholar 

  21. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  22. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

    Article  ADS  Google Scholar 

  23. Usmani, I. et al. Heralded quantum entanglement between two crystals. Nature Photon. 6, 234–237 (2012).

    Article  ADS  Google Scholar 

  24. Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    Article  ADS  Google Scholar 

  25. Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  26. The LIGO Scientific Collaboration, A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys. 7, 962–965 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Sanguinetti and H. Zbinden for stimulating discussions and IDQ for the loan of ID210 detectors. This work was supported in part by the EU project Q-Essence and the Swiss SNSF project—CR23I2 127118.

Author information

Authors and Affiliations

Authors

Contributions

A.M., N.S. and R.T.T. conceived and designed the research. N.B. and A.M. carried out the experiment. P.S. and N.S. contributed with theoretical analysis. All authors participated in writing the manuscript. N.S., R.T.T. and N.G. supervised the project.

Corresponding author

Correspondence to R. T. Thew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, N., Martin, A., Sekatski, P. et al. Displacement of entanglement back and forth between the micro and macro domains. Nature Phys 9, 545–548 (2013). https://doi.org/10.1038/nphys2681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing