Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protection of excited spin states by a superconducting energy gap

Abstract

The latest concepts for quantum computing and data storage rely on the addressing and manipulation of single spins. A limitation for single atoms or molecules in contact with a metal surface is the short lifetime of excited spin states, typically picoseconds, due to the exchange of energy and angular momentum with the itinerant electrons of the substrate1,2,3,4. Here we show that paramagnetic molecules on a superconducting substrate exhibit excited spin states with a lifetime of τ≈10 ns. We ascribe this increase in lifetime by orders of magnitude to the depletion of electronic states around the Fermi level in the superconductor. This prohibits pathways of energy relaxation into the substrate and allows the magnetic molecule to be electrically pumped into higher spin states, making superconducting substrates prime candidates for spin manipulation. We further show that the proximity of the scanning tunnelling microscope tip modifies the magnetic anisotropy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fe–OEP–Cl on Pb(111).
Figure 2: Long lived excited spin states probed by distance-dependent excitation spectra.
Figure 3: Changing the magnetic anisotropy with the STM tip.

Similar content being viewed by others

References

  1. Balashov, T. et al. Magnetic anisotropy and magnetization dynamics of individual atoms and clusters of Fe and Co on Pt(111). Phys. Rev. Lett. 102, 257203 (2009).

    Article  ADS  Google Scholar 

  2. Khajetoorians, A. A. et al. Itinerant nature of atom-magnetization excitation by tunneling electrons. Phys. Rev. Lett. 106, 037205 (2011).

    Article  ADS  Google Scholar 

  3. Kahle, S. et al. The quantum magnetism of individual Manganese- 12-acetate molecular magnets anchored at surfaces. Nano Lett. 12, 518–521 (2012).

    Article  ADS  Google Scholar 

  4. Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).

    Article  ADS  Google Scholar 

  5. Loth, S. et al. Controlling the state of quantum spins with electric currents. Nature Phys. 6, 340–344 (2010).

    Article  ADS  Google Scholar 

  6. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  ADS  Google Scholar 

  7. Tsukahara, N. et al. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102, 167203 (2009).

    Article  ADS  Google Scholar 

  8. Shiba, H. Classical spins in superconductors. Prog. Theor. Phys. 40, 435–451 (1968).

    Article  ADS  Google Scholar 

  9. Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F. & Eigler, D. M. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997).

    Article  Google Scholar 

  10. Ji, S -H. et al. High-resolution scanning tunneling spectroscopy of magnetic impurity induced bound states in the superconducting gap of Pb thin films. Phys. Rev. Lett. 100, 226801 (2008).

    Article  ADS  Google Scholar 

  11. Franke, K. J., Schulze, G. & Pascual, J. I. Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332, 940–944 (2011).

    Article  ADS  Google Scholar 

  12. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  13. Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nature Mater. 6, 516–520 (2007).

    Article  ADS  Google Scholar 

  14. Nishio, T. et al. Ground-state high-spin iron (III) octaethylporphyrin as studied by single-crystal cw/pulsed ESR spectroscopy. Synth. Met. 121, 1820–1821 (2001).

    Article  Google Scholar 

  15. Heinrich, B. W. et al. Change of the magnetic coupling of a metal–organic complex with the substrate by a stepwise ligand reaction. Nano Lett. 13, 4840–4843 (2013).

    Article  ADS  Google Scholar 

  16. Jaklevic, R. C. & Lambe, J. Molecular vibration spectra by electron tunneling. Phys. Rev. Lett. 17, 1139–1140 (1966).

    Article  ADS  Google Scholar 

  17. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    Article  ADS  Google Scholar 

  18. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  ADS  Google Scholar 

  19. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    Article  ADS  Google Scholar 

  20. Chilian, B. et al. Anomalously large g factor of single atoms adsorbed on a metal substrate. Phys. Rev. B 84, 212401 (2011).

    Article  ADS  Google Scholar 

  21. Leuenberger, M. N. & Loss, D. Spin relaxation in Mn12-acetate. Europhys. Lett. 46, 692–698 (1999).

    Article  ADS  Google Scholar 

  22. Ternes, M. et al. Interplay of conductance, force, and structural change in metallic point contacts. Phys. Rev. Lett. 106, 016802 (2011).

    Article  ADS  Google Scholar 

  23. Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328, 1370–1373 (2010).

    Article  ADS  Google Scholar 

  24. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Brouwer, F. von Oppen, N. Lorente and M. Ternes for fruitful discussions. Financial support by the Deutsche Forschungsgemeinschaft through Sfb 658 and by the focus area Nanoscale of Freie Universität Berlin is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

B.W.H., J.I.P. and K.J.F. designed the experiments. B.W.H. and L.B. performed the experiment. All authors discussed the data analysis and the results. B.W.H., J.I.P. and K.J.F. co-wrote the paper.

Corresponding author

Correspondence to B. W. Heinrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 839 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, B., Braun, L., Pascual, J. et al. Protection of excited spin states by a superconducting energy gap. Nature Phys 9, 765–768 (2013). https://doi.org/10.1038/nphys2794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing