Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2

Abstract

Coupling degrees of freedom of distinct nature plays a critical role in numerous physical phenomena1,2,3,4,5,6,7,8,9,10. The recent emergence of layered materials11,12,13 provides a laboratory for studying the interplay between internal quantum degrees of freedom of electrons14,15. Here we report new coupling phenomena connecting real spin with layer pseudospins in bilayer WSe2. In polarization-resolved photoluminescence measurements, we observe large spin orientation of neutral and charged excitons by both circularly and linearly polarized excitation, with the trion spectrum splitting into a doublet at large vertical electrical field. These observations can be explained as a locking of spin and layer pseudospin in a given valley15, where the doublet implies an electrically induced spin splitting. The observed distinctive behaviour of the trion doublet under polarized excitation further provides spectroscopic evidence of interlayer and intralayer trion species, a promising step towards optical manipulation in van der Waals heterostructures16 through interlayer excitons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupled spin, valley and layer degrees of freedom in bilayer WSe2.
Figure 2: Photoluminescence and differential reflectivity versus gate.
Figure 3: Optical orientation of spin and gate-induced peak splitting in trions.
Figure 4: Linearly polarized excitation of interlayer and intralayer trions.

Similar content being viewed by others

References

  1. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  Google Scholar 

  2. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  ADS  Google Scholar 

  3. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  4. Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  5. Fu, L. & Kane, C. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  6. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  ADS  Google Scholar 

  7. Lin, Y-J., Jiménez-Garcı´a, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

    Article  ADS  Google Scholar 

  8. Cheong, S-W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  ADS  Google Scholar 

  9. Žutić, I. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  10. Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater. 11, 409–416 (2012).

    Article  ADS  Google Scholar 

  11. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  12. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  13. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  14. Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  15. Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nature Commun. 4, 15 (2013).

    Article  Google Scholar 

  16. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  17. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  ADS  Google Scholar 

  18. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  19. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  20. Li, X., Cao, T., Niu, Q., Shi, J. & Feng, J. Coupling the valley degree of freedom to antiferromagnetic order. Proc. Natl Acad. Sci. USA 110, 3738–3742 (2013).

    Article  ADS  Google Scholar 

  21. Kormányos, A. et al. Monolayer MoS2: Trigonal warping, the Γ valley, and spin–orbit coupling effects. Phys. Rev. B 88, 045416 (2013).

    Article  ADS  Google Scholar 

  22. Castro, E. et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  ADS  Google Scholar 

  23. Min, H., Borghi, G., Polini, M. & MacDonald, A. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008).

    Article  ADS  Google Scholar 

  24. San-Jose, P., Prada, E., McCann, E. & Schomerus, H. Pseudospin valve in bilayer graphene: Towards graphene-based pseudospintronics. Phys. Rev. Lett. 102, 247204 (2009).

    Article  ADS  Google Scholar 

  25. Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Phys. 5, 889–893 (2009).

    Article  ADS  Google Scholar 

  26. Maher, P. et al. Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nature Phys. 9, 154–158 (2013).

    Article  ADS  Google Scholar 

  27. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

    Article  Google Scholar 

  28. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).

    Article  ADS  Google Scholar 

  29. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotech. 8, 634–638 (2013).

    Article  ADS  Google Scholar 

  30. Zeng, H. et al. Optical signature of symmetry variations and spin–valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    Article  Google Scholar 

  31. Song, Y. & Dery, H. Transport theory of monolayer transition-metal dichalcogenides through symmetry. Phys. Rev. Lett. 111, 026601 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge G. Liu and X. Wu for helpful information on the bilayer band structure, and D. Cobden for useful comments. This work is mainly supported by US DoE, BES, Division of Materials Sciences and Engineering (DE-SC0008145). A.M.J. is partially supported by a NSF graduate fellowship (DGE-0718124). H.Y. and W.Y. were supported by the Research Grant Council (HKU705513P) of the government of Hong Kong, and the Croucher Foundation under the Croucher Innovation Award. N.J.G., J.Y. and D.G.M. were supported by US DoE, BES, Materials Sciences and Engineering Division. Device fabrication was completed at the University of Washington Microfabrication Facility and NSF-funded Nanotech User Facility. Second harmonic generation is done at Garvey Imaging Core of the Institute for Stem Cell and Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Contributions

X.X. and W.Y. conceived the experiments. A.M.J. performed the measurements. J.S.R. fabricated the devices, assisted by A.M.J. and P.K. H.Y., W.Y., A.M.J. and X.X. analysed the results. The WSe2 crystals were synthesized by N.J.G., J.Y. and D.G.M., who also performed characterization measurements of bulk crystals. A.M.J., X.X., H.Y. and W.Y. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xiaodong Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1015 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A., Yu, H., Ross, J. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nature Phys 10, 130–134 (2014). https://doi.org/10.1038/nphys2848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing