Abstract
Coupling degrees of freedom of distinct nature plays a critical role in numerous physical phenomena1,2,3,4,5,6,7,8,9,10. The recent emergence of layered materials11,12,13 provides a laboratory for studying the interplay between internal quantum degrees of freedom of electrons14,15. Here we report new coupling phenomena connecting real spin with layer pseudospins in bilayer WSe2. In polarization-resolved photoluminescence measurements, we observe large spin orientation of neutral and charged excitons by both circularly and linearly polarized excitation, with the trion spectrum splitting into a doublet at large vertical electrical field. These observations can be explained as a locking of spin and layer pseudospin in a given valley15, where the doublet implies an electrically induced spin splitting. The observed distinctive behaviour of the trion doublet under polarized excitation further provides spectroscopic evidence of interlayer and intralayer trion species, a promising step towards optical manipulation in van der Waals heterostructures16 through interlayer excitons.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).
Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).
Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Fu, L. & Kane, C. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).
Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).
Lin, Y-J., Jiménez-Garcı´a, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).
Cheong, S-W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).
Žutić, I. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater. 11, 409–416 (2012).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).
Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nature Commun. 4, 15 (2013).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).
Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).
Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).
Li, X., Cao, T., Niu, Q., Shi, J. & Feng, J. Coupling the valley degree of freedom to antiferromagnetic order. Proc. Natl Acad. Sci. USA 110, 3738–3742 (2013).
Kormányos, A. et al. Monolayer MoS2: Trigonal warping, the Γ valley, and spin–orbit coupling effects. Phys. Rev. B 88, 045416 (2013).
Castro, E. et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).
Min, H., Borghi, G., Polini, M. & MacDonald, A. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008).
San-Jose, P., Prada, E., McCann, E. & Schomerus, H. Pseudospin valve in bilayer graphene: Towards graphene-based pseudospintronics. Phys. Rev. Lett. 102, 247204 (2009).
Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Phys. 5, 889–893 (2009).
Maher, P. et al. Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nature Phys. 9, 154–158 (2013).
Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).
Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).
Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotech. 8, 634–638 (2013).
Zeng, H. et al. Optical signature of symmetry variations and spin–valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).
Song, Y. & Dery, H. Transport theory of monolayer transition-metal dichalcogenides through symmetry. Phys. Rev. Lett. 111, 026601 (2013).
Acknowledgements
The authors wish to acknowledge G. Liu and X. Wu for helpful information on the bilayer band structure, and D. Cobden for useful comments. This work is mainly supported by US DoE, BES, Division of Materials Sciences and Engineering (DE-SC0008145). A.M.J. is partially supported by a NSF graduate fellowship (DGE-0718124). H.Y. and W.Y. were supported by the Research Grant Council (HKU705513P) of the government of Hong Kong, and the Croucher Foundation under the Croucher Innovation Award. N.J.G., J.Y. and D.G.M. were supported by US DoE, BES, Materials Sciences and Engineering Division. Device fabrication was completed at the University of Washington Microfabrication Facility and NSF-funded Nanotech User Facility. Second harmonic generation is done at Garvey Imaging Core of the Institute for Stem Cell and Regenerative Medicine.
Author information
Authors and Affiliations
Contributions
X.X. and W.Y. conceived the experiments. A.M.J. performed the measurements. J.S.R. fabricated the devices, assisted by A.M.J. and P.K. H.Y., W.Y., A.M.J. and X.X. analysed the results. The WSe2 crystals were synthesized by N.J.G., J.Y. and D.G.M., who also performed characterization measurements of bulk crystals. A.M.J., X.X., H.Y. and W.Y. co-wrote the paper. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1015 kb)
Rights and permissions
About this article
Cite this article
Jones, A., Yu, H., Ross, J. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nature Phys 10, 130–134 (2014). https://doi.org/10.1038/nphys2848
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2848
This article is cited by
-
The interplay of field-tunable strongly correlated states in a multi-orbital moiré system
Nature Physics (2024)
-
Ultrafast investigation of room temperature valley polarization in “optical bilayer” WS2
Science China Technological Sciences (2024)
-
Gapless edge states localized to odd/even layers of AA′-stacked honeycomb multilayers with staggered AB-sublattice potentials
Scientific Reports (2023)
-
Tunable phononic coupling in excitonic quantum emitters
Nature Nanotechnology (2023)
-
Exciton Superposition across Moiré States in a Semiconducting Moiré Superlattice
Nature Communications (2023)


