Abstract
Properties of the ‘electron gas’—in which conduction electrons interact by means of Coulomb forces but ionic potentials are neglected—change dramatically depending on the balance between kinetic energy and Coulomb repulsion. The limits are well understood1. For very weak interactions (high density), the system behaves as a Fermi liquid, with delocalized electrons. In contrast, in the strongly interacting limit (low density), the electrons localize and order into a Wigner crystal phase. The physics at intermediate densities, however, remains a subject of fundamental research2,3,4,5,6,7,8. Here, we study the intermediate-density electron gas confined to a circular disc, where the degree of confinement can be tuned to control the density. Using accurate quantum Monte Carlo techniques9, we show that the electron–electron correlation induced by an increase of the interaction first smoothly causes rings, and then angular modulation, without any signature of a sharp transition in this density range. This suggests that inhomogeneities in a confined system, which exist even without interactions, are significantly enhanced by correlations.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Giuliani, G. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, Cambridge, 2005).
Tanatar, B. & Ceperley, D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005–5016 (1989).
Attaccalite, C., Moroni, S., Gori-Giorgi, P. & Bachelet, G. B. Correlation energy and spin polarization in the 2D electron gas. Phys. Rev. Lett. 88, 256601 (2002).
Attaccalite, C., Moroni, S., Gori-Giorgi, P. & Bachelet, G. B. Phys. Rev. Lett. 91, 109902(E) (2003).
Abrahams, E., Kravchenko, S. V. & Sarachik, M. P. Metallic behavior and related phenomena in two dimensions. Rev. Mod. Phys. 73, 251–266 (2001).
Chakravarty, S., Kivelson, S., Nayak, C. & Voelker, K. Wigner glass, spin liquids, and the metal insulator transition. Phil. Mag. B 79, 859–868 (1999).
Jamei, R., Kivelson, S. & Spivak, B. Universal aspects of Coulomb-frustrated phase separation. Phys. Rev. Lett. 94, 56805 (2005).
Waintal, X. On the quantum melting of the two-dimensional Wigner crystal. Phys. Rev. B 73, 75417 (2006).
Foulkes, W. M. C., Mitas, L., Needs, R. J. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001).
Kouwenhoven, L. P., Austing, D. G. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001).
Reuter, D. et al. Coulomb-interaction-induced incomplete shell filling in the hole system of InAs quantum dots. Phys. Rev. Lett. 94, 26808 (2005).
Reimann, S. M. & Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283–1342 (2002).
Reusch, B. & Grabert, H. Unrestricted Hartree-Fock for quantum dots. Phys. Rev. B 68, 45309 (2003).
Yannouleas, C. & Landman, U. Unified description of floppy and rigid rotating Wigner molecules formed in quantum dots. Phys. Rev. B 69, 113306 (2004).
Reimann, S. M., Koskinen, M. & Manninen, M. Formation of Wigner molecules in small quantum dots. Phys. Rev. B 62, 8108–8113 (2000).
Rontani, M., Cavazzoni, C., Bellucci, D. & Goldoni, G. Full configuration interaction approach to the few-electron problem in artificial atoms.. J. Chem. Phys. 124, 124102 (2006).
Egger, R., Häusler, W., Mak, C. H. & Grabert, H. Crossover from Fermi liquid to Wigner molecule behavior in quantum dots. Phys. Rev. Lett. 82, 3320–3323 (1999).
Egger, R., Häusler, W., Mak, C. H. & Grabert, H. Phys. Rev. Lett. 83, 462(E) (1999).
Filinov, A. V., Bonitz, M. & Lezovik, Yu. E. Wigner crystallization in mesoscopic 2D electron systems. Phys. Rev. Lett. 86, 3851–3854 (2001).
Pederiva, F., Umrigar, C. J. & Lipparini, E. Diffusion Monte Carlo study of circular quantum dots. Phys. Rev. B 62, 8120–8125 (2000).
Pederiva, F., Umrigar, C. J. & Lipparini, E. Phys. Rev. B 68, 89901(E) (2003).
Güçlü, A. D. & Umrigar, C. J. Maximum-density droplet to lower-density droplet transition in quantum dots. Phys. Rev. B 72, 45309 (2005).
Ghosal, A., Umrigar, C. J., Jiang, H., Ullmo, D. & Baranger, H. U. Interaction effects in the mesoscopic regime: A quantum Monte Carlo study of irregular quantum dots. Phys. Rev. B 71, 241306(R) (2005).
Bedanov, V. M. & Peeters, F. M. Ordering and phase transitions of charged particles in a classical finite two-dimensional system. Phys. Rev. B 49, 2667–2676 (1994).
Koulakov, A. A. & Shklovskii, B. I. Charging spectrum and configurations of a Wigner crystal island. Phys. Rev. B 57, 2352–2367 (1998).
Umrigar, C. J., Wilson, K. G. & Wilkins, J. W. Optimized trial wave functions for quantum Monte Carlo calculations. Phys. Rev. Lett. 60, 1719–1722 (1988).
Umrigar, C. J. in Quantum Monte Carlo Methods in Physics and Chemistry (eds Nightingale, M. P. & Umrigar, C. J.) 129–160 (Kluwer, Dordrecht, 1999).
Umrigar, C. J., Nightingale, M. P. & Runge, K. J. A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99, 2865–2890 (1993).
Liu, K. S., Kalos, M. H. & Chester, G. V. Quantum hard spheres in a channel. Phys. Rev. A 10, 303–308 (1974).
Acknowledgements
This work was supported in part by the NSF (grants DMR-0506953 and DMR-0205328). A.G. was supported in part by the funds from the David Saxon chair at UCLA.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Material (PDF 106 kb)
Rights and permissions
About this article
Cite this article
Ghosal, A., Güçlü, A., Umrigar, C. et al. Correlation-induced inhomogeneity in circular quantum dots. Nature Phys 2, 336–340 (2006). https://doi.org/10.1038/nphys293
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys293
This article is cited by
-
Multielectron Bubbles in Liquid Helium
Journal of Low Temperature Physics (2020)
-
Coherent cyclotron motion beyond Kohn’s theorem
Nature Physics (2016)
-
A molecular state of correlated electrons in a quantum dot
Nature Physics (2008)


