Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes

Abstract

Non-commensurate two-dimensional materials such as a twisted graphene bilayer or graphene on boron nitride, consisting of components that have no finite common unit cell, exhibit emerging moiré physics such as novel Van Hove singularities1,2,3, Fermi velocity renormalization4,5, mini Dirac points6 and Hofstadter butterflies7,8,9,10,11. Here we use double-walled carbon nanotubes as a model system for probing moiré physics in incommensurate one-dimensional systems, by combining structural and optical characterizations. We show that electron wavefunctions between incommensurate inner- and outer-wall nanotubes can hybridize strongly, contrary to the conventional wisdom of negligible electron hybridization due to destructive interference12,13. The chirality-dependent inter-tube electronic coupling is described by one-dimensional zone folding of the electronic structure of twisted-and-stretched graphene bilayers. Our results demonstrate that incommensurate van der Waals interactions can be important for engineering the electronic structure and optical properties of one-dimensional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical transitions of an individual chirality-defined DWNT.
Figure 2: Energy shifts of 99 transitions in 28 DWNTs compared with the corresponding constituent SWNT transitions.
Figure 3: Chirality dependence of inter-tube electronic coupling in an incommensurate DWNT.
Figure 4: Simulation of the inter-tube electronic coupling-induced optical transition shift for a (15,10) inner SWNT.

Similar content being viewed by others

References

  1. Li, G. H. et al. Observation of Van Hove singularities in twisted graphene layers. Nature Phys. 6, 109–113 (2010).

    Article  ADS  Google Scholar 

  2. Kim, K. et al. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012).

    Article  ADS  Google Scholar 

  3. Havener, R. W. et al. Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 12, 3162–3167 (2012).

    Article  ADS  Google Scholar 

  4. De Laissardiere, G. T., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010).

    Article  ADS  Google Scholar 

  5. Luican, A. et al. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011).

    Article  ADS  Google Scholar 

  6. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012).

    Article  ADS  Google Scholar 

  7. Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    Article  ADS  Google Scholar 

  8. Bistritzer, R. & MacDonald, A. H. Moire bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  Google Scholar 

  9. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).

    Article  ADS  Google Scholar 

  10. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  ADS  Google Scholar 

  11. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  ADS  Google Scholar 

  12. Frank, S., Poncharal, P., Wang, Z. L. & de Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

    Article  ADS  Google Scholar 

  13. Uryu, S. & Ando, T. Electronic intertube transfer in double-wall carbon nanotubes. Phys. Rev. B 72, 245403 (2005).

    Article  ADS  Google Scholar 

  14. Saito, R. et al. Anomalous potential barrier of double-wall carbon nanotube. Chem. Phys. Lett. 348, 187–193 (2001).

    Article  ADS  Google Scholar 

  15. Bandow, S. et al. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48–54 (2001).

    Article  ADS  Google Scholar 

  16. Zuo, J. M. et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300, 1419–1421 (2003).

    Article  ADS  Google Scholar 

  17. Hashimoto, A. et al. Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys. Rev. Lett. 94, 045504 (2005).

    Article  ADS  Google Scholar 

  18. Hirahara, K. et al. Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction. Phys. Rev. B 73, 195420 (2006).

    Article  ADS  Google Scholar 

  19. Liu, K. H. et al. Direct determination of atomic structure of large-indexed carbon nanotubes by electron diffraction: Application to double-walled nanotubes. J. Phys. D 42, 125412 (2009).

    Article  ADS  Google Scholar 

  20. Saito, R., Dresselhaus, M. S. & Dresselhaus, G. Physical Properties of Carbon Nanotubes (World Scientific Publishing Company, 1998).

    Book  Google Scholar 

  21. Kociak, M. et al. Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys. Rev. Lett. 89, 155501 (2002).

    Article  ADS  Google Scholar 

  22. Villalpando-Paez, F. et al. Raman spectroscopy study of isolated double-walled carbon nanotubes with different metallic and semiconducting configurations. Nano Lett. 8, 3879–3886 (2008).

    Article  ADS  Google Scholar 

  23. Liu, K. H. et al. Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J. Am. Chem. Soc. 131, 62–63 (2009).

    Article  Google Scholar 

  24. Levshov, D. et al. Experimental evidence of a mechanical coupling between layers in an individual double-walled carbon nanotube. Nano Lett. 11, 4800–4804 (2011).

    Article  ADS  Google Scholar 

  25. Liu, K. H. et al. Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Nature Commun. 4, 1375 (2013).

    Article  ADS  Google Scholar 

  26. Moradian, R., Azadi, S. & Refii-Tabar, H. When double-wall carbon nanotubes can become metallic or semiconducting. J. Phys. Condens. Matter 19, 176209 (2007).

    Article  ADS  Google Scholar 

  27. Lefebvre, J. & Finnie, P. Polarized light microscopy and spectroscopy of individual single-walled carbon nanotubes. Nano Res. 4, 788–794 (2011).

    Article  Google Scholar 

  28. Liu, K. H. et al. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nature Nanotech. 8, 917–922 (2013).

    Article  ADS  Google Scholar 

  29. Liu, K. et al. An atlas of carbon nanotube optical transitions. Nature Nanotech. 7, 325–329 (2012).

    Article  ADS  Google Scholar 

  30. Lefebvre, J., Fraser, J. M., Homma, Y. & Finnie, P. Photoluminescence from single-walled carbon nanotubes: A comparison between suspended and micelle-encapsulated nanotubes. Appl. Phys. A 78, 1107–1110 (2004).

    Article  ADS  Google Scholar 

  31. Steiner, M. et al. How does the substrate affect the Raman and excited state spectra of a carbon nanotube? Appl. Phys. A 96, 271–282 (2009).

    Article  ADS  Google Scholar 

  32. Huang, S. M., Cai, X. Y. & Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125, 5636–5637 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported mainly by NSF grants (No. DMR-0846648 and DMR-1404865) and the NSF Center for Integrated Nanomechanical Systems (No. EEC-0832819). Support for the TEM characterization and sample preparation was provided by the Director, Office of Energy Research, Materials Sciences and Engineering Division of the US Department of Energy under Contract No. DE-AC02- 05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

F.W., K.L. and C.J. conceived the project. K.L., J.K. and A.L. contributed to sample growth and characterization. K.L. carried out TEM measurements. K.L. and X.H. carried out optical measurements. K.L. and C.J. analysed the experimental data. C.J., E.W. and F.W. developed the theory. K.L., C.J. and F.W. wrote the manuscript. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Jin, C., Hong, X. et al. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nature Phys 10, 737–742 (2014). https://doi.org/10.1038/nphys3042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing