Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices

Abstract

Electrons in graphene are described by relativistic Dirac–Weyl spinors with a two-component pseudospin1,2,3,4,5,6,7,8,9,10,11,12. The unique pseudospin structure of Dirac electrons leads to emerging phenomena such as the massless Dirac cone2, anomalous quantum Hall effect2,3, and Klein tunnelling4,5 in graphene. The capability to manipulate electron pseudospin is highly desirable for novel graphene electronics, and it requires precise control to differentiate the two graphene sublattices at the atomic level. Graphene/boron nitride moiré superlattices, where a fast sublattice oscillation due to boron and nitrogen atoms is superimposed on the slow moiré period, provides an attractive approach to engineer the electron pseudospin in graphene13,14,15,16,17,18. This unusual moiré superlattice leads to a spinor potential with unusual hybridization of electron pseudospins, which can be probed directly through infrared spectroscopy because optical transitions are very sensitive to excited state wavefunctions. Here, we perform micro-infrared spectroscopy on a graphene/boron nitride heterostructure and demonstrate that the moiré superlattice potential is dominated by a pseudospin-mixing component analogous to a spatially varying pseudomagnetic field. In addition, we show that the spinor potential depends sensitively on the gate-induced carrier concentration in graphene, indicating a strong renormalization of the spinor potential from electron–electron interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene/BN heterostructure and typical transport property.
Figure 2: Infrared micro-spectroscopy of the graphene/BN heterostructure.
Figure 3: Calculated optical conductivity changes under different spinor potentials.
Figure 4: Gate-dependent moiré spinor potential.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    ADS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  3. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  4. Neto, A. H. C. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  5. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  ADS  Google Scholar 

  6. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  7. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  ADS  Google Scholar 

  8. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    Article  ADS  Google Scholar 

  9. Horng, J. et al. Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2011).

    Article  ADS  Google Scholar 

  10. Min, H., Borghi, G., Polini, M. & MacDonald, A. H. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008).

    Article  ADS  Google Scholar 

  11. Jung, J., Zhang, F. & MacDonald, A. H. Lattice theory of pseudospin ferromagnetism in bilayer graphene: Competing interaction-induced quantum Hall states. Phys. Rev. B 83, 115408 (2011).

    Article  ADS  Google Scholar 

  12. San-Jose, P., Prada, E., McCann, E. & Schomerus, H. Pseudospin valve in bilayer graphene: Towards graphene-based pseudospintronics. Phys. Rev. Lett. 102, 247204 (2009).

    Article  ADS  Google Scholar 

  13. Park, C-H. et al. New generation of massless Dirac fermions in graphene under external periodic potentials. Phys. Rev. Lett. 101, 126804 (2008).

    Article  ADS  Google Scholar 

  14. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012).

    Article  ADS  Google Scholar 

  15. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  ADS  Google Scholar 

  16. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  ADS  Google Scholar 

  17. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  ADS  Google Scholar 

  18. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Mater. 12, 792–797 (2013).

    Article  ADS  Google Scholar 

  19. Zhang, Y. B. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  ADS  Google Scholar 

  20. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Article  ADS  Google Scholar 

  21. Ohta, T. et al. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  ADS  Google Scholar 

  22. Lui, C. H. et al. Observation of an electrically tunable band gap in trilayer graphene. Nature Phys. 7, 944–947 (2011).

    Article  ADS  Google Scholar 

  23. Son, Y. W., Cohen, M. M. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  ADS  Google Scholar 

  24. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  ADS  Google Scholar 

  25. Avouris, P., Chen, Z. H. & Perebeinos, V. Carbon-based electronics. Nature Nanotechnol. 2, 605–615 (2007).

    Article  ADS  Google Scholar 

  26. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  27. Wallbank, J. R. et al. Generic miniband structure of graphene on a hexagonal substrate. Phys. Rev. B 87, 245408 (2013).

    Article  ADS  Google Scholar 

  28. Kindermann, M., Uchoa, B. & Miller, D. L. Zero-energy modes and gate-tunable gap in graphene on hexagonal boron nitride. Phys. Rev. B 86, 115415 (2012).

    Article  ADS  Google Scholar 

  29. Song, J. C. W., Shytov, A. V. & Levitov, L. S. Electron interactions and gap opening in graphene superlattices. Phys. Rev. Lett. 111, 266801 (2013).

    Article  ADS  Google Scholar 

  30. Abergel, D. S. L. et al. Infrared absorption by graphene-hBN heterostructures. New J. Phys. 15, 123009 (2013).

    Article  ADS  Google Scholar 

  31. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Z. Li and J. Song for helpful discussions. Device fabrication and optical measurements in this work were mainly supported by the Office of Naval Research (award N00014-13-1-0464). Electrical characterizations and theoretical analysis were supported by Office of Basic Energy Science, Department of Energy under contract Nos DE SC0003949 and DE AC02 05CH11231 (Materials Science Division). F.W. acknowledges support from a David and Lucile Packard fellowship. G.Z. acknowledges support from the National Basic Research Program of China (Grant No. 2013CB934500, 2012CB921302) and the National Natural Science Foundation of China (Grant No. 61325021, 91223204). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

F.W. and G.Z. conceived the research. W.Y. and X.L. grew the samples. Z.S., L.J. and D.F. fabricated the devices. Z.S., L.J., J.H. and H.A.B. carried out the optical measurements. C.J., F.W. and Z.S. developed the theory. Z.S., C.J., F.W. and G.Z. wrote the manuscript. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Guangyu Zhang or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Jin, C., Yang, W. et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nature Phys 10, 743–747 (2014). https://doi.org/10.1038/nphys3075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing