Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement

Abstract

Continuous observation of an oscillator results in quantum back-action, which limits the knowledge acquired by the measurement. A careful balance between the information obtained and the back-action disturbance leads to the standard quantum limit of precision. This limit can be surpassed by a measurement with strength modulated at twice the oscillator frequency, resulting in a squeezed state of the oscillator motion, as proposed decades ago1,2,3. Here, we report the generation of a squeezed state of an oscillator by a stroboscopic back-action-evading measurement. The oscillator is the spin of an atomic ensemble precessing in a magnetic field. The oscillator initially prepared nearly in the ground state is stroboscopically coupled to an optical mode of a cavity. A measurement of the output light results in a 2.2 ± 0.3 dB squeezed state of the oscillator. The demonstrated spin-squeezed state of 108 atoms with an angular spin variance of 8 × 10−10 rad2 is promising for magnetic field sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic oscillator.
Figure 2: Outline of the experimental set-up.
Figure 3: Noise characterization of the oscillator state prepared without any conditional evolution.
Figure 4: Conditional preparation of a squeezed oscillator.

Similar content being viewed by others

References

  1. Braginskii, V., Vorontsov, Y. & Khalili, F. Optimal quantum measurements in detectors of gravitation radiation. JETP Lett. 27, 276–280 (1978).

    ADS  Google Scholar 

  2. Thorne, K. S., Drever, R. W. P., Caves, C. M., Zimmermann, M. & Sandberg, V. D. Quantum nondemolition measurements of harmonic oscillators. Phys. Rev. Lett. 40, 667–671 (1978).

    Article  ADS  Google Scholar 

  3. Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980).

    Article  ADS  Google Scholar 

  4. Meekhof, D. M., Monroe, C., King, B. E., Itano, W. M. & Wineland, D. J. Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76, 1796–1799 (1996).

    Article  ADS  Google Scholar 

  5. Fernholz, T. et al. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. Phys. Rev. Lett. 101, 073601 (2008).

    Article  ADS  Google Scholar 

  6. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    Article  ADS  Google Scholar 

  7. Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    Article  ADS  Google Scholar 

  8. Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    Article  ADS  Google Scholar 

  9. Clerk, A. A., Marquardt, F. & Jacobs, K. Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys. 10, 095010 (2008).

    ADS  Google Scholar 

  10. Vasilakis, G., Shah, V. & Romalis, M. V. Stroboscopic backaction evasion in a dense alkali-metal vapor. Phys. Rev. Lett. 106, 143601 (2011).

    Article  ADS  Google Scholar 

  11. Suh, J. et al. Mechanically detecting and avoiding the quantum fluctuations of a microwave field. Science 344, 1262–1265 (2014).

    Article  ADS  Google Scholar 

  12. Polzik, E. S. & Hammerer, K. Trajectories without quantum uncertainties. Ann. Phys. 527, A15–A20 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  13. Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

    Article  ADS  Google Scholar 

  14. Bohnet, J. G. et al. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Nature Photon. 8, 731–736 (2014).

    Article  ADS  Google Scholar 

  15. Sewell, R. et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012).

    Article  ADS  Google Scholar 

  16. Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article  ADS  Google Scholar 

  17. Schleier-Smith, M., Leroux, I. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

    Article  ADS  Google Scholar 

  18. Holstein, T. & Primakoff, H. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940).

    Article  ADS  Google Scholar 

  19. Julsgaard, B., Sherson, J., Sørensen, J. L. & Polzik, E. S. Characterizing the spin state of an atomic ensemble using the magneto-optical resonance method. J. Opt. B 6, 5–14 (2004).

    ADS  Google Scholar 

  20. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  21. Happer, W. & Mathur, B. S. Effective operator formalism in optical pumping. Phys. Rev. 163, 12–25 (1967).

    Article  ADS  Google Scholar 

  22. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article  ADS  Google Scholar 

  23. Hammerer, K., Aspelmeyer, M., Polzik, E. S. & Zoller, P. Establishing Einstein–Poldosky–Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009).

    Article  ADS  Google Scholar 

  24. Balabas, M. V., Karaulanov, T., Ledbetter, M. P. & Budker, D. Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. 105, 070801 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ERC grant INTERFACE, DARPA project QUASAR and EU grants SIQS and MALICIA. K.J. acknowledges support from the Carlsberg Foundation. G.V. gratefully acknowledges help and support from P. Karadaki.

Author information

Authors and Affiliations

Authors

Contributions

G.V. and H.S. contributed equally to this work. G.V., H.S., K.J., D.S. and B.C. performed the experiments and contributed to the analysis, M.B. and D.S. fabricated the microcell. G.V., H.S., K.J. and E.S.P. wrote the paper and all the authors provided feedback to the manuscript. E.S.P. supervised the research.

Corresponding author

Correspondence to E. S. Polzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilakis, G., Shen, H., Jensen, K. et al. Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement. Nature Phys 11, 389–392 (2015). https://doi.org/10.1038/nphys3280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing