Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced electron coherence in atomically thin Nb3SiTe6

Abstract

It is now well established that many of the technologically important properties of two-dimensional (2D) materials, such as the extremely high carrier mobility in graphene1 and the large direct band gaps in MoS2 monolayers2, arise from quantum confinement. However, the influence of reduced dimensions on electron–phonon (e–ph) coupling and its attendant dephasing effects in such systems has remained unclear. Although phonon confinement3,4,5,6,7 is expected to produce a suppression of e–ph interactions in 2D systems with rigid boundary conditions6,7, experimental verification of this has remained elusive8. Here, we show that the e–ph interaction is, indeed, modified by a phonon dimensionality crossover in layered Nb3SiTe6 atomic crystals. When the thickness of the Nb3SiTe6 crystals is reduced below a few unit cells, we observe an unexpected enhancement of the weak-antilocalization signature in magnetotransport. This finding strongly supports the theoretically predicted suppression of e–ph interactions caused by quantum confinement of phonons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of bulk and thin-layer Nb3SiTe6.
Figure 2: Transport properties of Nb3SiTe6 nano-devices.
Figure 3: Analysis of WAL in Nb3SiTe6 thin crystals.
Figure 4: Thickness and temperature dependences of electron phase coherence in Nb3SiTe6 thin crystals.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    ADS  Google Scholar 

  2. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  3. Belitz, D. & Das Sarma, S. Inelastic phase-coherence time in thin metal films. Phys. Rev. B 36, 7701–7704 (1987).

    Article  ADS  Google Scholar 

  4. Johnson, K., Wybourne, M. N. & Perrin, N. Acoustic-mode coupling and electron heating in thin metal films. Phys. Rev. B 50, 2035–2038 (1994).

    Article  ADS  Google Scholar 

  5. Yu, S., Kim, K., Stroscio, M. & Iafrate, G. Electron–acoustic-phonon scattering rates in cylindrical quantum wires. Phys. Rev. B 51, 4695–4698 (1995).

    Article  ADS  Google Scholar 

  6. Glavin, B. A., Pipa, V. I., Mitin, V. V. & Stroscio, M. A. Relaxation of a two-dimensional electron gas in semiconductor thin films at low temperatures: Role of acoustic phonon confinement. Phys. Rev. B 65, 205315 (2002).

    Article  ADS  Google Scholar 

  7. Tienda-Luna, I. M. et al. Effect of confined acoustic phonons on the electron mobility of rectangular nanowires. Appl. Phys. Lett. 103, 163107 (2013).

    Article  ADS  Google Scholar 

  8. Lin, J. J. & Bird, J. P. Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures. J. Phys. Condens. Matter 14, R501 (2002).

    Article  ADS  Google Scholar 

  9. Perrin, N. Acoustic-phonon decoherence and electron transport in metallic nanostructures. J. Phys. Condens. Matter 19, 216222 (2007).

    Article  ADS  Google Scholar 

  10. Seyler, J. & Wybourne, M. Acoustic waveguide modes observed in electrically heated metal wires. Phys. Rev. Lett. 69, 1427–1430 (1992).

    Article  ADS  Google Scholar 

  11. Hone, J., Batlogg, B., Benes, Z., Johnson, A. T. & Fischer, J. E. Quantized phonon spectrum of single-wall carbon nanotubes. Science 289, 1730–1733 (2000).

    Article  ADS  Google Scholar 

  12. Nabity, J. & Wybourne, M. Evidence for two-dimensional phonons in a thin metal film. Phys. Rev. B 44, 8990–8996 (1991).

    Article  ADS  Google Scholar 

  13. Song, S-H., Pan, W., Tsui, D. C., Xie, Y. H. & Monroe, D. Energy relaxation of two-dimensional carriers in strained Ge/Si0.4Ge0.6 and Si/Si0.7Ge0.3 quantum wells: Evidence for two-dimensional acoustic phonons. Appl. Phys. Lett. 70, 3422–3424 (1997).

    Article  ADS  Google Scholar 

  14. Sugaya, T. et al. Electron–phonon scattering in an etched InGaAs quantum wire. Physica B 314, 99–103 (2002).

    Article  ADS  Google Scholar 

  15. Karvonen, J. T. & Maasilta, I. J. Influence of phonon dimensionality on electron energy relaxation. Phys. Rev. Lett. 99, 145503 (2007).

    Article  ADS  Google Scholar 

  16. DiTusa, J. F., Lin, K., Park, M., Isaacson, M. S. & Parpia, J. M. Role of phonon dimensionality on electron–phonon scattering rates. Phys. Rev. Lett. 68, 1156–1159 (1992).

    Article  ADS  Google Scholar 

  17. Bergmann, G. Weak localization in thin films: A time-of-flight experiment with conduction electrons. Phys. Rep. 107, 1–58 (1984).

    Article  ADS  Google Scholar 

  18. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    Article  ADS  Google Scholar 

  19. Peters, R. P. & Bergmann, G. Dependence of the phase-coherence time in weak localization on electronic mean free path and film thickness. J. Phys. Soc. Jpn 54, 3478–3487 (1985).

    Article  ADS  Google Scholar 

  20. Raffy, H., Nédellec, P., Dumoulin, L., MacLachlan, D. S. & Burger, J. P. Anomalous magnetoresistance in 2D Pd and PdHx films. J. Phys. 46, 627–635 (1985).

    Google Scholar 

  21. Kwong, Y. K., Lin, K., Isaacson, M. S. & Parpia, J. M. An attempt to observe phonon dimensionality crossover effects in the inelastic scattering rate of thin free-standing aluminum films. J. Low Temp. Phys. 88, 261–272 (1992).

    Article  ADS  Google Scholar 

  22. Pippard, A. B. CXXII. Ultrasonic attenuation in metals. Philos. Mag. 46, 1104–1114 (1955).

    Article  Google Scholar 

  23. Bergmann, G. Electron–electron interaction in superconductors with impurities. Phys. Lett. A 29, 492–493 (1969).

    Article  ADS  Google Scholar 

  24. Sergeev, A. & Mitin, V. Electron–phonon interaction in disordered conductors: Static and vibrating scattering potentials. Phys. Rev. B 61, 6041–6047 (2000).

    Article  ADS  Google Scholar 

  25. Li, J., Badding, M. E. & DiSalvo, F. J. Synthesis and structure of Nb3SiTe6, a new layered ternary niobium telluride compound. J. Alloys Compd. 184, 257–263 (1992).

    Article  Google Scholar 

  26. Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

    Google Scholar 

  27. Efros, A. L. & Pollak, M. Electron–Electron Interactions in Disordered Systems (Elsevier, 1985).

    Google Scholar 

  28. Andrei, N., Furuya, K. & Lowenstein, J. H. Solution of the Kondo problem. Rev. Mod. Phys. 55, 331–402 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  29. Natelson, D., Willett, R. L., West, K. W. & Pfeiffer, L. N. Molecular-scale metal wires. Solid State Commun. 115, 269–274 (2000).

    Article  ADS  Google Scholar 

  30. Hikami, S., Larkin, A. I. & Nagaoka, Y. Spin–orbit interaction and magnetoresistance in the two dimensional random system. Progr. Theor. Exp. Phys. 63, 707–710 (1980).

    Article  ADS  Google Scholar 

  31. Altshuler, B. L., Aronov, A. G. & Lee, P. A. Interaction effects in disordered Fermi systems in two dimensions. Phys. Rev. Lett. 44, 1288–1291 (1980).

    Article  ADS  Google Scholar 

  32. Li, S-L. et al. Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13, 3546–3552 (2013).

    Article  ADS  Google Scholar 

  33. Kibis, O. V. Suppression of electron–phonon interaction in narrow-band crystals. Russ. Phys. J. 40, 780–783 (1997).

    Article  Google Scholar 

  34. Breznay, N. P. et al. Weak antilocalization and disorder-enhanced electron interactions in annealed films of the phase-change compound GeSb2Te4 . Phys. Rev. B 86, 205302 (2012).

    Article  ADS  Google Scholar 

  35. Balanda, A. et al. The g-factor of the 21/2 + state in 91Nb. Acta Phys. Pol. B 8, 147–152 (1977).

    Google Scholar 

  36. Safa, B. The second spectrum of niobium: II. Accurate fine structure study of odd-parity levels. Phys. Scr. 87, 035303 (2013).

    Article  Google Scholar 

  37. Manyala, N. et al. Magnetoresistance from quantum interference effects in ferromagnets. Nature 404, 581–584 (2000).

    Article  ADS  Google Scholar 

  38. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. DiTusa for informative discussions. The work at Tulane is supported by the US National Science Foundation under grant DMR-1205469 and the NSF EPSCoR Cooperative Agreement No. EPS-1003897, with additional support from the Louisiana Board of Regents. P.W.A. and T.J.L. acknowledge the support of the US Department of Energy, Office of Science, Basic Energy Sciences, under Award No.DE-FG02-07ER46420. L.Y.A. and P.B.S. acknowledge the support of the Russian Science Foundation (project #14-12-01217) and are grateful to the Joint Supercomputer Center of the Russian Academy of Sciences and ‘Lomonosov’ Research Computing Center for the opportunity of using a cluster computer for the quantum-chemical calculations. P.B.S. acknowledges a Grant of the President of the Russian Federation for government support of young PhD scientists MK-6218.2015.2 (project ID 14.Z56.15.6218-MK). Z.I.P. acknowledges the support of the Leading Science School program (No NSh-2886.2014.2). D.N. and H.J. acknowledge support through the US Department of Energy, Office of Science, Basic Energy Sciences award DE-FG02-06ER46337. The work at UNO is supported by the US National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897, with additional support from the Louisiana Board of Regents.

Author information

Authors and Affiliations

Contributions

J.H., J.Y.L., H.W.Z. and Z.Q.M. carried out bulk sample growth and characterization, including XRD, resistivity and specific heat measurements. J.H., X.L., C.L.Y. and J.W. fabricated the nano-devices. J.H., X.L., T.J.L., P.W.A., S.M.A.R., and L.S. collected resistivity and magnetotransport data for the nano-devices. J.H. and J.B.H. carried out TEM measurements. H.J. and D.N. performed Raman spectrum measurements. L.Y.A., Z.I.P. and P.B.S. calculated the electronic structure. J.H., J.W., Z.Q.M., P.W.A., D.N. and P.B.S. analysed the data and wrote the manuscript. J.H. and X.L. contributed equally to this work. This project was supervised by Z.Q.M. and J.W.

Corresponding authors

Correspondence to J. Wei or Z. Q. Mao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Liu, X., Yue, C. et al. Enhanced electron coherence in atomically thin Nb3SiTe6. Nature Phys 11, 471–476 (2015). https://doi.org/10.1038/nphys3321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing