Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linear magnetoresistance in mosaic-like bilayer graphene

Abstract

The magnetoresistance of conductors usually has a quadratic dependence on magnetic field1, however, examples exist of non-saturating linear behaviour in diverse materials2,3,4,5,6. Assigning a specific microscopic mechanism to this unusual phenomenon is obscured by the co-occurrence and interplay of doping, mobility fluctuations and a polycrystalline structure7,8. Bilayer graphene has virtually no doping fluctuations, yet provides a built-in mosaic tiling due to the dense network of partial dislocations9,10. We present magnetotransport measurements of epitaxial bilayer graphene that exhibits a strong and reproducible linear magnetoresistance that persists to B = 62 T at and above room temperature, decorated by quantum interference effects at low temperatures. Partial dislocations thus have a profound impact on the transport properties in bilayer graphene, a system that is frequently assumed to be dislocation-free. It further provides a clear and tractable model system for studying the unusual properties of mosaic conductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental data of linear MR.
Figure 2: From network structure to linear MR.

Similar content being viewed by others

References

  1. Pippard, A. B. Magnetoresistance in Metals (Cambridge Univ. Press, 1989).

    Google Scholar 

  2. Xu, R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 (1997).

    Article  ADS  Google Scholar 

  3. Lee, M., Rosenbaum, T. F., Saboungi, M. L. & Schnyders, H. S. Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett. 88, 066602 (2002).

    Article  ADS  Google Scholar 

  4. Husmann, A. et al. Megagauss sensors. Nature 417, 421–424 (2002).

    Article  ADS  Google Scholar 

  5. Delmo, M. P., Yamamoto, S., Kasai, S., Ono, T. & Kobayashi, K. Large positive magnetoresistive effect in silicon induced by the space-charge effect. Nature 457, 1112–1115 (2009).

    Article  ADS  Google Scholar 

  6. Kozlova, N. V. et al. Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor. Nature Commun. 3, 1097 (2012).

    Article  ADS  Google Scholar 

  7. Parish, M. M. & Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 426, 162–165 (2003).

    Article  ADS  Google Scholar 

  8. Parish, M. M. & Littlewood, P. B. Classical magnetotransport of inhomogeneous conductors. Phys. Rev. B 72, 094417 (2005).

    Article  ADS  Google Scholar 

  9. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  ADS  Google Scholar 

  10. Butz, B. et al. Dislocations in bilayer graphene. Nature 505, 533–537 (2014).

    Article  ADS  Google Scholar 

  11. Porter, N. A. & Marrows, C. H. Linear magnetoresistance in n-type silicon due to doping density fluctuations. Sci. Rep. 2, 565 (2012).

    Article  ADS  Google Scholar 

  12. Wang, W. et al. Large linear magnetoresistance and Shubnikov-de Hass oscillations in single crystals of YPdBi Heusler topological insulators. Sci. Rep. 3, 2181 (2013).

    Google Scholar 

  13. Assaf, B. A. et al. Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures. Appl. Phys. Lett. 102, 012102 (2013).

    Article  ADS  Google Scholar 

  14. Wang, Z. H. et al. Granularity controlled nonsaturating linear magnetoresistance in topological insulator Bi2Te3 films. Nano Lett. 14, 6510–6514 (2014).

    Article  ADS  Google Scholar 

  15. Kim, K. S. et al. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. Nature Mater. 12, 887–892 (2013).

    Article  ADS  Google Scholar 

  16. Jobst, J., Waldmann, D., Gornyi, I. V., Mirlin, A. D. & Weber, H. B. Electron–electron interaction in the magnetoresistance of graphene. Phys. Rev. Lett. 108, 106601 (2012).

    Article  ADS  Google Scholar 

  17. Hu, J. & Rosenbaum, T. F. Classical and quantum routes to linear magnetoresistance. Nature Mater. 7, 697–700 (2008).

    Article  ADS  Google Scholar 

  18. Friedman, A. L. et al. Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett. 10, 3962–3965 (2010).

    Article  ADS  Google Scholar 

  19. Abrikosov, A. A. Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998).

    Article  ADS  Google Scholar 

  20. Zhi-Min, L., Yang-Bo, Z., Han-Chun, W., Bing-Hong, H. & Da-Peng, Y. Observation of both classical and quantum magnetoresistance in bilayer graphene. Europhys. Lett. 94, 57004 (2011).

    Article  ADS  Google Scholar 

  21. Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A. & Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009).

    Article  ADS  Google Scholar 

  22. Speck, F. et al. The quasi-free-standing nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett. 99, 122106 (2011).

    Article  ADS  Google Scholar 

  23. McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    Article  ADS  Google Scholar 

  24. San-Jose, P., Gorbachev, R. V., Geim, A. K., Novoselov, K. S. & Guinea, F. Stacking boundaries and transport in bilayer graphene. Nano Lett. 14, 2052–2057 (2014).

    Article  ADS  Google Scholar 

  25. Waldmann, D. et al. Robust graphene membranes in a silicon carbide frame. ACS Nano 7, 4441–4448 (2013).

    Google Scholar 

  26. Simon, S. & Halperin, B. Explanation for the resistivity law in quantum Hall systems. Phys. Rev. Lett. 73, 3278–3281 (1994).

    Article  ADS  Google Scholar 

  27. Kou, A. et al. Electron–hole asymmetric integer and fractional quantum Hall effect in bilayer graphene. Science 345, 55–57 (2014).

    Article  ADS  Google Scholar 

  28. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    Article  ADS  Google Scholar 

  29. Maher, P. et al. Tunable fractional quantum Hall phases in bilayer graphene. Science 345, 61–64 (2014).

    Article  ADS  Google Scholar 

  30. LeRoy, B. J. & Yankowitz, M. Emergent complex states in bilayer graphene. Science 345, 31–32 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank O. Pankratov for helpful discussions and D. Weckbecker for computational assistance. The work was carried out in the framework of the SFB953, the PP1459 and the Cluster of Excellence EXC 315 ‘Engineering of Advanced Materials’, supported by the DFG. We acknowledge the support of the HLD at HZDR, a member of the European Magnetic Field Laboratory (EMFL).

Author information

Authors and Affiliations

Authors

Contributions

F.K. and H.B.W. conceived the experiment. F.K. and C.O. carried out sample preparation, electrical measurement and data analysis, supported by C.H. in an early stage. F.K. and E.K. carried out high magnetic field measurements. B.B. and E.S. contributed structural information on dislocation networks by TEM. The quantum mechanical calculations were developed and performed by S.S. Network simulation was performed by F.K. and C.O. The manuscript was written by F.K., C.O., S.S. and H.B.W. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Heiko B. Weber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisslinger, F., Ott, C., Heide, C. et al. Linear magnetoresistance in mosaic-like bilayer graphene. Nature Phys 11, 650–653 (2015). https://doi.org/10.1038/nphys3368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing