Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se)

Abstract

In superconductors, electrons are paired and condensed into the ground state. An impurity can break the electron pairs into quasiparticles with energy states inside the superconducting gap. The characteristics of such in-gap states reflect accordingly the properties of the superconducting ground state1. A zero-energy in-gap state is particularly noteworthy, because it can be the consequence of non-trivial pairing symmetry1 or topology2,3. Here we use scanning tunnelling microscopy/spectroscopy to demonstrate that an isotropic zero-energy bound state with a decay length of 10 Å emerges at each interstitial iron impurity in superconducting Fe(Te,Se). More noticeably, this zero-energy bound state is robust against a magnetic field up to 8 T, as well as perturbations by neighbouring impurities. Such a spectroscopic feature has no natural explanation in terms of impurity states in superconductors with s-wave symmetry, but bears all the characteristics of the Majorana bound state proposed for topological superconductors2,3, indicating that the superconducting state and the scattering mechanism of the interstitial iron impurities in Fe(Te,Se) are highly unconventional.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homogeneous two-gap structure on Fe(Te,Se).
Figure 2: Identification of IFI on Fe1+x (Te,Se).
Figure 3: Spatial evolution of the ZBS.
Figure 4: Perturbation of the ZBS by temperature, magnetic field and a neighbouring IFI.

Similar content being viewed by others

References

  1. Balatsky, A. V., Vekhter, I. & Zhu, J-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    Article  ADS  Google Scholar 

  2. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  3. Linder, J., Tanaka, Y., Yokoyama, T., Sudbø, A. & Nagaosa, N. Unconventional superconductivity on a topological insulator. Phys. Rev. Lett. 104, 067001 (2010).

    Article  ADS  Google Scholar 

  4. Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2Ca(Cu, Zn)2O8+δ . Nature 403, 746–750 (2000).

    Article  ADS  Google Scholar 

  5. Hudson, E. W. et al. Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2Ca(Cu, Zn)2O8+δ . Nature 411, 920–924 (2001).

    Article  ADS  Google Scholar 

  6. Wang, Z. et al. Close relationship between superconductivity and the bosonic mode in Ba0.6K0.4Fe2As2 and Na(Fe0.975Co0.025)As. Nature Phys. 9, 42–48 (2013).

    Article  ADS  Google Scholar 

  7. Yang, H. et al. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy. Nature Commun. 4, 2749 (2013).

    Article  ADS  Google Scholar 

  8. Grothe, S. et al. Bound states of defects in superconducting LiFeAs studied by scanning tunneling spectroscopy. Phys. Rev. B 86, 174503 (2012).

    Article  ADS  Google Scholar 

  9. Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se, Te). Science 328, 474–476 (2010).

    Article  ADS  Google Scholar 

  10. Allan, M. P. et al. Anisotropic energy gaps of iron-based superconductivity from intraband quasiparticle interference in LiFeAs. Science 336, 563–567 (2012).

    Article  ADS  Google Scholar 

  11. Liu, T. J. et al. Charge-carrier localization induced by excess Fe in the superconductor Fe1+yTe1−xSex . Phys. Rev. B 80, 174509 (2009).

    Article  ADS  Google Scholar 

  12. Rößler, S. et al. Disorder-driven electronic localization and phase separation in superconducting Fe1+yTe0.5Se0.5 single crystals. Phys. Rev. B 82, 144523 (2010).

    Article  ADS  Google Scholar 

  13. Taen, T., Tsuchiya, Y., Nakajima, Y. & Tamegai, T. Superconductivity at Tc 14 K in single-crystalline FeTe0.61Se0.39 . Phys. Rev. B 80, 092502 (2009).

    Article  ADS  Google Scholar 

  14. Miao, H. et al. Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in FeTe0.55Se0.45 . Phys. Rev. B 85, 094506 (2012).

    Article  ADS  Google Scholar 

  15. Massee, F. et al. Cleavage surfaces of the BaFe2−xCoxAs2 and FeySe1−xTex superconductors: A combined STM plus LEED study. Phys. Rev. B 80, 140507(R) (2009).

    Article  ADS  Google Scholar 

  16. Li, S. et al. First-order magnetic and structural phase transitions in Fe1+ySexTe1−x . Phys. Rev. B 79, 054503 (2009).

    Article  ADS  Google Scholar 

  17. Thampy, V. et al. Friedel-like oscillations from interstitial iron in superconducting Fe1+yTe0.62Se0.38 . Phys. Rev. Lett. 108, 107002 (2012).

    Article  ADS  Google Scholar 

  18. Yin, Y. et al. Scanning tunneling spectroscopy and vortex imaging in the iron pnictide superconductor BaFe1.8Co0.2As2 . Phys. Rev. Lett. 102, 097002 (2009).

    Article  ADS  Google Scholar 

  19. Shan, L. et al. Observation of ordered vortices with Andreev bound states in Ba0.6K0.4Fe2As2 . Nature Phys. 7, 325–331 (2011).

    Article  ADS  Google Scholar 

  20. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  21. Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F. & Eigler, D. M. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997).

    Article  Google Scholar 

  22. Tsai, W-F., Zhang, Y-Y., Fang, C. & Hu, J. P. Impurity-induced bound states in iron-based superconductors with s-wave cosk x cosk y pairing symmetry. Phys. Rev. B 80, 064513 (2009).

    Article  ADS  Google Scholar 

  23. Zhang, D. Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors. Phys. Rev. Lett. 103, 186402 (2009).

    Article  ADS  Google Scholar 

  24. Hu, J. P. Iron-based superconductors as odd-parity superconductors. Phys. Rev. X 3, 031004 (2013).

    Google Scholar 

  25. Song, C-L. et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science 332, 1410–1413 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Fang, X. Dai, T. Xiang, D-H. Lee, T-K. Lee, G-M. Zhang and P. Coleman for stimulating discussions. This work is supported by the State of Texas through TcSUH, the Chinese Academy of Sciences, US Air Force Office of Scientific Research (FA9550-09-1-0656), Robert A. Welch Foundation (E-1146), US DOE (DE-SC0002554, DE-FG02-99ER45747), National Science Foundation of China (11322432, 11190020), and Ministry of Science and Technology of China (2012CB933000).

Author information

Authors and Affiliations

Contributions

J-X.Y. carried out the STM/S experiments with contributions from Z.W., J-H.W., Z-Y.Y., J.G., X-Y.H., L.S., A.L. and X-J.L.; Z.W. synthesized and characterized the sequence of samples; J-X.Y., S.H.P. and H.D. performed the data analysis, figure development and wrote the paper with contributions from J-P.H., Z-Q.W., C-S.T., P-H.H., J.L. and X-X.W.; S.H.P. supervised the project. All authors discussed the results and the interpretation.

Corresponding author

Correspondence to S. H. Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, JX., Wu, Z., Wang, JH. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nature Phys 11, 543–546 (2015). https://doi.org/10.1038/nphys3371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing