Abstract
The Kondo effect is a many-body phenomenon arising due to conduction electrons scattering off a localized spin1. Coherent spin-flip scattering off such a quantum impurity correlates the conduction electrons, and at low temperature this leads to a zero-bias conductance anomaly2,3. This has become a common signature in bias spectroscopy of single-electron transistors, observed in GaAs quantum dots4,5,6,7,8,9 as well as in various single-molecule transistors10,11,12,13,14,15. Although the zero-bias Kondo effect is well established, the extent to which Kondo correlations persist in non-equilibrium situations where inelastic processes induce decoherence remains uncertain. Here we report on a pronounced conductance peak observed at finite bias voltage in a carbon-nanotube quantum dot in the spin-singlet ground state. We explain this finite-bias conductance anomaly by a non-equilibrium Kondo effect involving excitations into a spin-triplet state. Excellent agreement between calculated and measured nonlinear conductance is obtained, thus strongly supporting the correlated nature of this non-equilibrium resonance.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993).
Glazman, L. & Raikh, M. Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett. 47, 452–455 (1988).
Ng, T. & Lee, P. A. On-site Coulomb repulsion and resonant tunnelling. Phys. Rev. Lett. 61, 1768–1771 (1988).
Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).
Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998).
van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000).
Sasaki, S. et al. Kondo effect in an integer-spin quantum dot. Nature 405, 764–767 (2000).
Kogan, A., Granger, G., Kastner, M. A. & Goldhaber-Gordon, D. Singlet-triplet transition in a single-electron transistor at zero magnetic field. Phys. Rev. B 67, 113309 (2003).
Zumbühl, D. M., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Cotunnelling spectroscopy in few-electron quantum dots. Phys. Rev. Lett. 93, 256801 (2004).
Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).
Nygård, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).
Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).
Yu, L. H. et al. Inelastic electron tunnelling via molecular vibrations in single molecule transistors. Phys. Rev. Lett. 93, 266802 (2004).
Babić, B., Kontos, T. & Schönenberger, C. Kondo effect in carbon nanotubes at half filling. Phys. Rev. B 70, 235419 (2004).
Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005).
Appelbaum, J. ‘s-d’ exchange model of zero-bias tunnelling anomalies. Phys. Rev. Lett. 17, 91–95 (1966).
Paaske, J., Rosch, A. & Wölfle, P. Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory. Phys. Rev. B 69, 155330 (2004).
Kiselev, M. N., Kikoin, K. & Molenkamp, L. W. Resonance kondo tunnelling through a double quantum dot at finite bias. Phys. Rev. B 68, 155323 (2003).
Liang, W., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002).
Jeong, H., Chang, A. M. & Melloch, M. R. The Kondo effect in an artificial quantum dot molecule. Science 293, 2221–2223 (2001).
Wegewijs, M. R. & Nazarov, Yu. V. Inelastic co-tunnelling through an excited state of a quantum dot. Preprint at <http://arxiv.org/abs/cond-mat/0103579> (2001).
Golovach, V. N. & Loss, D. Transport through a double quantum dot in the sequential tunnelling and cotunnelling regimes. Phys. Rev. B 69, 245327 (2004).
Oreg, Y., Byczuk, K. & Halperin, B. I. Spin configurations of a carbon nanotube in a nonuniform external potential. Phys. Rev. Lett. 85, 365–368 (2000).
Sapmaz, S. et al. Electronic excitation spectrum of metallic carbon nanotubes. Phys. Rev. B 71, 153402 (2005).
Anderson, P. W. A poor man’s derivation of scaling laws for the Kondo problem. J. Phys. C 3, 2436–2441 (1966).
Rosch, A., Paaske, J., Kroha, J. & Wölfle, P. Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory and poor man’s scaling. Phys. Rev. Lett. 90, 076804 (2003).
Rosch, A., Paaske, J., Kroha, J. & Wölfle, P. The Kondo effect in non-equilibrium quantum dots: perturbative renormalization group. J. Phys. Soc. Japan 74, 118–126 (2005).
Paaske, J., Rosch, A., Kroha, J. & Wölfle, P. Nonequilibrium transport through a Kondo dot: decoherence effects. Phys. Rev. B 70, 155301 (2004).
Acknowledgements
We thank L. DiCarlo and W. F. Koehl for experimental contributions and D. H. Cobden and V. Körting for useful discussions. This research was supported by the Center for Functional Nanostructures of the DFG (J.P., P.W.), the European Commission through project FP6-003673 CANEL of the IST Priority (J.P.), ARO/ARDA (DAAD19-02-1-0039), NSF-NIRT (EIA-0210736) (N.M., C.M.M.) and the Danish Technical Research Council (J.N.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Paaske, J., Rosch, A., Wölfle, P. et al. Non-equilibrium singlet–triplet Kondo effect in carbon nanotubes. Nature Phys 2, 460–464 (2006). https://doi.org/10.1038/nphys340
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys340
This article is cited by
-
Kondo effect and spin–orbit coupling in graphene quantum dots
Nature Communications (2021)
-
Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid
Nature Communications (2021)
-
Evolution and universality of two-stage Kondo effect in single manganese phthalocyanine molecule transistors
Nature Communications (2021)
-
Single spin localization and manipulation in graphene open-shell nanostructures
Nature Communications (2019)
-
Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex
Scientific Reports (2018)


