Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polar pattern formation in driven filament systems requires non-binary particle collisions

Abstract

From the self-organization of the cytoskeleton to the synchronous motion of bird flocks, living matter has the extraordinary ability to behave in a concerted manner1,2,3,4. The Boltzmann equation for self-propelled particles is frequently used in silico to link a system’s meso- or macroscopic behaviour to the microscopic dynamics of its constituents5,6,7,8,9,10. But so far such studies have relied on an assumption of simplified binary collisions owing to a lack of experimental data suggesting otherwise. We report here experimentally determined binary-collision statistics by studying a recently introduced molecular system, the high-density actomyosin motility assay11,12,13. We demonstrate that the alignment induced by binary collisions is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, indicating that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. Our findings demonstrate that the unique properties of biological active-matter systems require a description that goes well beyond that developed in the framework of kinetic theories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental binary collisions.
Figure 2: Experimentally obtained binary-collision statistics for the actomyosin motility assay.
Figure 3: Comprehensive binary-collision statistics pj(ηj|θ12) and their symmetry properties.
Figure 4: Evidence of multi-filament collisions.

Similar content being viewed by others

References

  1. Karsenti, E. Self-organization in cell biology: A brief history. Nature Rev. Mol. Cell Biol. 9, 255–262 (2008).

    Article  Google Scholar 

  2. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article  ADS  Google Scholar 

  3. Couzin, I. D. & Krause, J. Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1–109 (2003).

    Article  Google Scholar 

  4. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).

    Article  ADS  Google Scholar 

  5. Bertin, E., Droz, M. & Grégoire, G. Boltzmann and hydrodynamic description for self-propelled particles. Phys. Rev. E 74, 022101 (2006).

    Article  ADS  Google Scholar 

  6. Bertin, E., Droz, M. & Grégoire, G. Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis. J. Phys. A 42, 445001 (2009).

    Article  Google Scholar 

  7. Hanke, T., Weber, C. A. & Frey, E. Understanding collective dynamics of soft active colloids by binary scattering. Phys. Rev. E 88, 052309 (2013).

    Article  ADS  Google Scholar 

  8. Weber, C. A., Thüroff, F. & Frey, E. Role of particle conservation in self-propelled particle systems. New J. Phys. 15, 045014 (2013).

    Article  ADS  Google Scholar 

  9. Thüroff, F., Weber, C. A. & Frey, E. Critical assessment of the Boltzmann approach to active systems. Phys. Rev. Lett. 111, 190601 (2013).

    Article  ADS  Google Scholar 

  10. Thüroff, F., Weber, C. A. & Frey, E. Numerical treatment of the Boltzmann equation for self-propelled particle systems. Phys. Rev. X 4, 041030 (2014).

    Google Scholar 

  11. Schaller, V., Weber, C., Semmrich, C., Frey, E. & Bausch, A. R. Polar patterns of driven filaments. Nature 467, 73–77 (2010).

    Article  ADS  Google Scholar 

  12. Butt, T. et al. Myosin motors drive long range alignment of actin filaments. J. Biol. Chem. 285, 4964–4974 (2010).

    Article  Google Scholar 

  13. Hussain, S., Molloy, J. E. & Khan, S. M. Spatiotemporal dynamics of actomyosin networks. Biophys. J. 105, 1456–1465 (2013).

    Article  ADS  Google Scholar 

  14. Ward, A. J., Sumpter, D. J. T., Couzin, I. D., Hart, P. J. B. & Krause, J. Quorum decision-making facilitates information transfer in fish shoals. Proc. Natl Acad. Sci. USA 105, 6948–6953 (2008).

    Article  ADS  Google Scholar 

  15. Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–894 (2010).

    Article  ADS  Google Scholar 

  16. Attanasi, A. et al. Information transfer and behavioural inertia in starling flocks. Nature Phys. 10, 691–696 (2014).

    Article  ADS  Google Scholar 

  17. Zhang, H. P., Be’er, A., Florin, E. L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. Proc. Natl Acad. Sci. USA 107, 13626–13630 (2010).

    Article  ADS  Google Scholar 

  18. Sumino, Y. et al. Large-scale vortex lattice emerging from cocollective moving microtubules. Nature 483, 448–452 (2012).

    Article  ADS  Google Scholar 

  19. Narayan, V., Ramaswamy, S. & Menon, N. Long-lived giant number fluctuations in a swarming granular nematic. Science 317, 105–108 (2007).

    Article  ADS  Google Scholar 

  20. Aranson, I. S., Volfson, D. & Tsimring, L. S. Swirling motion in a system of vibrated elongated particles. Phys. Rev. E 75, 051301 (2007).

    Article  ADS  Google Scholar 

  21. Kudrolli, A., Lumay, G., Volfson, D. & Tsimring, L. S. Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100, 058001 (2008).

    Article  ADS  Google Scholar 

  22. Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010).

    Article  ADS  Google Scholar 

  23. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  24. Grégoire, G. & Chaté, H. Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004).

    Article  ADS  Google Scholar 

  25. Sheetz, M. P., Chasan, R. & Spudich, J. A. ATP-dependent movement of myosin in vitro: Characterization of a quantitative assay. J. Cell Biol. 99, 1867–1871 (1984).

    Article  Google Scholar 

  26. Aranson, I. S. & Tsimring, L. S. Pattern formation of microtubules and motors: Inelastic interaction of polar rods. Phys. Rev. E 71, 050901 (2005).

    Article  ADS  Google Scholar 

  27. Weber, C. A., Schaller, V., Bausch, A. R. & Frey, E. Nucleation-induced transition to collective motion in active systems. Phys. Rev. E 86, 030901 (2012).

    Article  ADS  Google Scholar 

  28. Ihle, T. Kinetic theory of flocking: Derivation of hydrodynamic equations. Phys. Rev. E 83, 030901 (2011).

    Article  ADS  Google Scholar 

  29. Ihle, T. Large density expansion of hydrodynamic theory for self-propelled particles. Preprint at http://arXiv.org/abs/1501.03570 (2015).

  30. Chou, Y.-L. & Ihle, T. Active matter beyond mean-field: Ring-kinetic theory for self-propelled particles. Phys. Rev. E 91, 022103 (2015).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Research Council in the framework of the Advanced Grant 289714-SelfOrg, Deutsche Forschungsgemeinschaft via project No. B2 within the SFB No. 863, and the German Excellence Initiative via the programme ‘NanoSystems Initiative Munich’ (NIM).

Author information

Authors and Affiliations

Authors

Contributions

R.S., C.A.W., E.F. and A.R.B. designed the project. R.S. and A.R.B. performed and designed all experiments. C.A.W. and E.F. theoretically analysed the experimental data. All authors participated in interpreting the experimental and theoretical results and in writing the manuscript.

Corresponding authors

Correspondence to Erwin Frey or Andreas R. Bausch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R., Weber, C., Frey, E. et al. Polar pattern formation in driven filament systems requires non-binary particle collisions. Nature Phys 11, 839–843 (2015). https://doi.org/10.1038/nphys3423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing