Abstract
Over the past years, much effort has gone towards generating interactions between two optical beams so strong that they could be observed at the level of individual photons1,2,3. Interactions this strong, beyond opening up a new regime in optics4, could lead to technologies such as all-optical quantum information processing5,6. However, the extreme weakness of photon–photon scattering has hindered any attempt to observe such interactions at the level of single particles. Here we present an implementation of a strong optical nonlinearity using electromagnetically induced transparency7, and a direct measurement of the resulting nonlinear phase shift for single post-selected photons. We show that the observed phase shift depends not only on the incident intensity of the (coherent-state) input signal, but also in a discrete fashion on whether 0 or 1 photons are detected at the output. We believe that this constitutes the first direct measurement of the cross-phase shift due to single photons, whose presence or absence is established based on a discrete detection event. It opens a door to future studies of nonlinear optics in the quantum regime, and potential applications in areas such as quantum information processing.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).
Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999).
Harris, S. E. & Yamamoto, Y. Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611–3614 (1998).
Deutsch, I. H., Chiao, R. Y. & Garrison, J. C. Diphotons in a nonlinear Fabry–Perot resonator: Bound states of interacting photons in an optical quantum wire. Phys. Rev. Lett. 69, 3627–3630 (1992).
Milburn, G. Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).
Nemoto, K. & Munro, W. J. Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004).
Fleischhauer, M., Imamoglu, A. & Marangos, J. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).
Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963).
Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963).
Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).
Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985).
Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980).
Grangier, P., Levenson, J. A. & Poizat, J.-P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).
Vitali, D., Fortunato, M. & Tombesi, P. Complete quantum teleportation with a Kerr nonlinearity. Phys. Rev. Lett. 85, 445–448 (2000).
Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).
Raimond, J.-M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).
Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007).
Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007).
Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000).
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).
Devoret, M. & Schoelkopf, R. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).
Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H. & Edamatsu, K. Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nature Photon. 3, 95–98 (2009).
Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nature Photon. 7, 138–141 (2013).
O’Shea, D., Junge, C., Volz, J. & Rauschenbeutel, A. Fiber-optical switch controlled by a single atom. Phys. Rev. Lett. 111, 193601 (2013).
Hendrickson, S., Pittman, T. & Franson, J. Nonlinear transmission through a tapered fiber in rubidium vapor. J. Opt. Soc. Am. B 26, 267–271 (2009).
Spillane, S. et al. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett. 100, 233602 (2008).
Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nature Photon. 8, 965–970 (2014).
Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009).
Pritchard, J. D. et al. Cooperative atom–light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010).
Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).
Parigi, V. et al. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms. Phys. Rev. Lett. 109, 233602 (2012).
Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).
Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013).
Baur, S., Tiarks, D., Rempe, G. & DĂĽrr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014).
Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014).
Guerreiro, T. et al. Nonlinear interaction between single photons. Phys. Rev. Lett. 113, 173601 (2014).
Shapiro, J. H. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).
Shapiro, J. H. & Razavi, M. Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007).
Gea-Banacloche, J. Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010).
Munro, W. J., Nemoto, K. & Spiller, T. P. Weak nonlinearities: A new route to optical quantum computation. New J. Phys. 7, 137 (2005).
Lo, H.-Y. et al. Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels. Phys. Rev. A 83, 041804 (2011).
Smith, W. P., Reiner, J. E., Orozco, L. A., Kuhr, S. & Wiseman, H. M. Capture and release of a conditional state of a cavity QED system by quantum feedback. Phys. Rev. Lett. 89, 133601 (2002).
Foster, G. T., Smith, W. P., Reiner, J. E. & Orozco, L. A. Third-order correlations in cavity quantum electrodynamics. J. Opt. B 4, S281 (2002).
Foster, G. T., Smith, W. P., Reiner, J. E. & Orozco, L. A. Time-dependent electric field fluctuations at the subphoton level. Phys. Rev. A 66, 033807 (2002).
Feizpour, A., Dmochowski, G. & Steinberg, A. M. Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium. Preprint at http://arXiv.org/abs/1406.0245 (2014).
Wolfgramm, F. et al. Bright filter-free source of indistinguishable photon pairs. Opt. Express 16, 18145–18151 (2008).
Wang, Z.-B., Marzlin, K.-P. & Sanders, B. C. Large cross-phase modulation between slow copropagating weak pulses in Rb87. Phys. Rev. Lett. 97, 063901 (2006).
Chen, Y.-F., Liu, Y.-C., Tsai, Z.-H., Wang, S.-H. & Ite, A. Y. Beat-note interferometer for direct phase measurement of photonic information. Phys. Rev. A 72, 033812 (2005).
Lo, H.-Y., Su, P.-C., Cheng, Y.-W., Wu, P.-I. & Chen, Y.-F. Femtowatt-light-level phase measurement of slow light pulses via beat-note interferometer. Opt. Express 18, 18498–18505 (2010).
Dmochowski, G. et al. Observation of EIT-enhanced cross-phase modulation in the short-pulse regime. Preprint at http://arXiv.org/abs/1506.07051 (2015).
Acknowledgements
This work was funded by NSERC, CIFAR and QuantumWorks. We would like to thank A. Hayat for useful discussions, and A. Stummer for designing and building several electronic devices for this experiment.
Author information
Authors and Affiliations
Contributions
All authors have contributed to the design of the experiment, interpretation of the results, and preparation and revisions of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 525 kb)
Rights and permissions
About this article
Cite this article
Feizpour, A., Hallaji, M., Dmochowski, G. et al. Observation of the nonlinear phase shift due to single post-selected photons. Nature Phys 11, 905–909 (2015). https://doi.org/10.1038/nphys3433
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys3433
This article is cited by
-
Entanglement purification of two-photon systems in multiple degrees of freedom
Quantum Information Processing (2020)
-
Logic Bell state concentration with parity check measurement
Frontiers of Physics (2019)
-
Strong coupling between photons of two light fields mediated by one atom
Nature Physics (2018)
-
Heisenberg-scaling measurement of the single-photon Kerr non-linearity using mixed states
Nature Communications (2018)
-
Single-photon controlled multi-photon polarization unitary gate based on weak cross-Kerr nonlinearities
Quantum Information Processing (2018)


