Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of the nonlinear phase shift due to single post-selected photons

Abstract

Over the past years, much effort has gone towards generating interactions between two optical beams so strong that they could be observed at the level of individual photons1,2,3. Interactions this strong, beyond opening up a new regime in optics4, could lead to technologies such as all-optical quantum information processing5,6. However, the extreme weakness of photon–photon scattering has hindered any attempt to observe such interactions at the level of single particles. Here we present an implementation of a strong optical nonlinearity using electromagnetically induced transparency7, and a direct measurement of the resulting nonlinear phase shift for single post-selected photons. We show that the observed phase shift depends not only on the incident intensity of the (coherent-state) input signal, but also in a discrete fashion on whether 0 or 1 photons are detected at the output. We believe that this constitutes the first direct measurement of the cross-phase shift due to single photons, whose presence or absence is established based on a discrete detection event. It opens a door to future studies of nonlinear optics in the quantum regime, and potential applications in areas such as quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experimental set-up.
Figure 2: XPS versus average photon number per pulse.
Figure 3: Inferred (ninf) versus average photon number in the interaction region.
Figure 4: Post-selected single-photon XPS.

Similar content being viewed by others

References

  1. Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    Article  ADS  Google Scholar 

  2. Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999).

    Article  ADS  Google Scholar 

  3. Harris, S. E. & Yamamoto, Y. Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611–3614 (1998).

    Article  ADS  Google Scholar 

  4. Deutsch, I. H., Chiao, R. Y. & Garrison, J. C. Diphotons in a nonlinear Fabry–Perot resonator: Bound states of interacting photons in an optical quantum wire. Phys. Rev. Lett. 69, 3627–3630 (1992).

    Article  ADS  Google Scholar 

  5. Milburn, G. Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).

    Article  ADS  Google Scholar 

  6. Nemoto, K. & Munro, W. J. Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004).

    Article  ADS  Google Scholar 

  7. Fleischhauer, M., Imamoglu, A. & Marangos, J. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  8. Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  9. Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  10. Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    Article  ADS  Google Scholar 

  11. Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985).

    Article  ADS  Google Scholar 

  12. Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980).

    Article  ADS  Google Scholar 

  13. Grangier, P., Levenson, J. A. & Poizat, J.-P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).

    Article  ADS  Google Scholar 

  14. Vitali, D., Fortunato, M. & Tombesi, P. Complete quantum teleportation with a Kerr nonlinearity. Phys. Rev. Lett. 85, 445–448 (2000).

    Article  ADS  Google Scholar 

  15. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  16. Raimond, J.-M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  17. Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007).

    Article  ADS  Google Scholar 

  18. Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007).

    Article  ADS  Google Scholar 

  19. Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000).

    Article  ADS  Google Scholar 

  20. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  21. Devoret, M. & Schoelkopf, R. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  22. Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H. & Edamatsu, K. Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nature Photon. 3, 95–98 (2009).

    Article  ADS  Google Scholar 

  23. Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nature Photon. 7, 138–141 (2013).

    Article  ADS  Google Scholar 

  24. O’Shea, D., Junge, C., Volz, J. & Rauschenbeutel, A. Fiber-optical switch controlled by a single atom. Phys. Rev. Lett. 111, 193601 (2013).

    Article  ADS  Google Scholar 

  25. Hendrickson, S., Pittman, T. & Franson, J. Nonlinear transmission through a tapered fiber in rubidium vapor. J. Opt. Soc. Am. B 26, 267–271 (2009).

    Article  ADS  Google Scholar 

  26. Spillane, S. et al. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett. 100, 233602 (2008).

    Article  ADS  Google Scholar 

  27. Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nature Photon. 8, 965–970 (2014).

    Article  ADS  Google Scholar 

  28. Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009).

    Article  ADS  Google Scholar 

  29. Pritchard, J. D. et al. Cooperative atom–light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010).

    Article  ADS  Google Scholar 

  30. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  Google Scholar 

  31. Parigi, V. et al. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms. Phys. Rev. Lett. 109, 233602 (2012).

    Article  ADS  Google Scholar 

  32. Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    Article  ADS  Google Scholar 

  33. Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013).

    Article  ADS  Google Scholar 

  34. Baur, S., Tiarks, D., Rempe, G. & DĂĽrr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014).

    Article  ADS  Google Scholar 

  35. Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014).

    Article  ADS  Google Scholar 

  36. Guerreiro, T. et al. Nonlinear interaction between single photons. Phys. Rev. Lett. 113, 173601 (2014).

    Article  ADS  Google Scholar 

  37. Shapiro, J. H. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).

    Article  ADS  Google Scholar 

  38. Shapiro, J. H. & Razavi, M. Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007).

    Article  ADS  Google Scholar 

  39. Gea-Banacloche, J. Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010).

    Article  ADS  Google Scholar 

  40. Munro, W. J., Nemoto, K. & Spiller, T. P. Weak nonlinearities: A new route to optical quantum computation. New J. Phys. 7, 137 (2005).

    Article  ADS  Google Scholar 

  41. Lo, H.-Y. et al. Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels. Phys. Rev. A 83, 041804 (2011).

    Article  ADS  Google Scholar 

  42. Smith, W. P., Reiner, J. E., Orozco, L. A., Kuhr, S. & Wiseman, H. M. Capture and release of a conditional state of a cavity QED system by quantum feedback. Phys. Rev. Lett. 89, 133601 (2002).

    Article  ADS  Google Scholar 

  43. Foster, G. T., Smith, W. P., Reiner, J. E. & Orozco, L. A. Third-order correlations in cavity quantum electrodynamics. J. Opt. B 4, S281 (2002).

    ADS  Google Scholar 

  44. Foster, G. T., Smith, W. P., Reiner, J. E. & Orozco, L. A. Time-dependent electric field fluctuations at the subphoton level. Phys. Rev. A 66, 033807 (2002).

    Article  ADS  Google Scholar 

  45. Feizpour, A., Dmochowski, G. & Steinberg, A. M. Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium. Preprint at http://arXiv.org/abs/1406.0245 (2014).

  46. Wolfgramm, F. et al. Bright filter-free source of indistinguishable photon pairs. Opt. Express 16, 18145–18151 (2008).

    Article  ADS  Google Scholar 

  47. Wang, Z.-B., Marzlin, K.-P. & Sanders, B. C. Large cross-phase modulation between slow copropagating weak pulses in Rb87. Phys. Rev. Lett. 97, 063901 (2006).

    Article  ADS  Google Scholar 

  48. Chen, Y.-F., Liu, Y.-C., Tsai, Z.-H., Wang, S.-H. & Ite, A. Y. Beat-note interferometer for direct phase measurement of photonic information. Phys. Rev. A 72, 033812 (2005).

    Article  ADS  Google Scholar 

  49. Lo, H.-Y., Su, P.-C., Cheng, Y.-W., Wu, P.-I. & Chen, Y.-F. Femtowatt-light-level phase measurement of slow light pulses via beat-note interferometer. Opt. Express 18, 18498–18505 (2010).

    Article  ADS  Google Scholar 

  50. Dmochowski, G. et al. Observation of EIT-enhanced cross-phase modulation in the short-pulse regime. Preprint at http://arXiv.org/abs/1506.07051 (2015).

Download references

Acknowledgements

This work was funded by NSERC, CIFAR and QuantumWorks. We would like to thank A. Hayat for useful discussions, and A. Stummer for designing and building several electronic devices for this experiment.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the design of the experiment, interpretation of the results, and preparation and revisions of the manuscript.

Corresponding author

Correspondence to Amir Feizpour.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feizpour, A., Hallaji, M., Dmochowski, G. et al. Observation of the nonlinear phase shift due to single post-selected photons. Nature Phys 11, 905–909 (2015). https://doi.org/10.1038/nphys3433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing