Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes

Abstract

Single-walled carbon nanotubes (SWNTs) are π-conjugated, quasi-one-dimensional structures consisting of rolled-up graphene sheets that, depending on their chirality, behave as semiconductors or metals1; owing to their unique properties, they enable groundbreaking applications in mechanics, nanoelectronics and photonics2,3. In semiconducting SWNTs, medium-sized excitons (3–5 nm) with large binding energy and oscillator strength are the fundamental excitations4,5,6,7,8; exciton wavefunction localization and one-dimensionality give rise to a strong electron–phonon coupling9,10,11, the study of which is crucial for the understanding of their electronic and optical properties. Here we report on the use of resonant sub-10-fs visible pulses12 to generate and detect, in the time domain, coherent phonons in SWNT ensembles. We observe vibrational wavepackets for the radial breathing mode (RBM) and the G mode, and in particular their anharmonic coupling, resulting in a frequency modulation of the G mode by the RBM. Quantum-chemical modelling13 shows that this effect is due to a corrugation of the SWNT surface on photoexcitation, leading to a coupling between longitudinal and radial vibrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential transmission (ΔT/T ) dynamics of SWNTs.
Figure 2: Vibrational spectra of SWNTs.
Figure 3: Analysis of the frequency modulation of the G mode.
Figure 4: Quantum chemical modelling.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. (eds) Carbon Nanotubes : Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001).

  2. Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).

    Article  ADS  Google Scholar 

  3. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  ADS  Google Scholar 

  4. Zhao, H. & Mazumdar, S. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402 (2004).

    Article  ADS  Google Scholar 

  5. Korovyanko, O. J., Sheng, C.-X., Vardeny, Z. V., Dalton, A. B. & Baughman, R. H. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes. Phys. Rev. Lett. 92, 017403 (2004).

    Article  ADS  Google Scholar 

  6. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  ADS  Google Scholar 

  7. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004).

    Article  ADS  Google Scholar 

  8. Chang, E., Bussi, G., Ruini, A. & Molinari, E. Exciton in carbon nanotubes: An Ab initio symmetry-based approach. Phys. Rev. Lett. 92, 196401 (2004).

    Article  ADS  Google Scholar 

  9. LeRoy, B. J., Lemay, S. G., Kong, J. & Dekker, C. Electrical generation and absorption of phonons in carbon nanotubes. Nature 432, 371–374 (2004).

    Article  ADS  Google Scholar 

  10. Htoon, H., O'Connel, M. J., Doorn, S. K. & Klimov, V. I. Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon assisted transitions. Phys. Rev. Lett. 94, 127403 (2005).

    Article  ADS  Google Scholar 

  11. Perebeinos, V., Tersoff, J. & Avouris, P. Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett. 94, 027402 (2005).

    Article  ADS  Google Scholar 

  12. Zavelani-Rossi, M. et al. Pulse compression over 170-THz bandwidth in the visible by use of only chirped mirrors. Opt. Lett. 26, 1155–1157 (2001).

    Article  ADS  Google Scholar 

  13. Tretiak, S., Saxena, A., Martin, R. L. & Bishop, A. R. Conformational dynamics of photoexcited conjugated molecules. Phys. Rev. Lett. 89, 097402 (2002).

    Article  ADS  Google Scholar 

  14. Rao, A. M. et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191 (1997).

    Article  Google Scholar 

  15. Pollard, W. T., Lee, S.-Y. & Mathies, R. A. Wave packet theory of dynamic absorption spectra in femtosecond pump–probe experiments. J. Chem. Phys. 92, 4012–4029 (1990).

    Article  ADS  Google Scholar 

  16. Kobayashi, T., Saito, T. & Ohtani, H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414, 531–534 (2001).

    Article  ADS  Google Scholar 

  17. Lanzani, G., Cerullo, G., Brabec, C. & Sariciftci, N. S. Time domain investigation of the intrachain vibrational dynamics of a prototypical light-emitting conjugated polymer. Phys. Rev. Lett. 90, 047402 (2003).

    Article  ADS  Google Scholar 

  18. Manzoni, C. et al. Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. Phys. Rev. Lett. 94, 207401 (2005).

    Article  ADS  Google Scholar 

  19. Lauret, J.-S. et al. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 90, 057404 (2003).

    Article  ADS  Google Scholar 

  20. Ostojic, G. N. et al. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Phys. Rev. Lett. 92, 117402 (2004).

    Article  ADS  Google Scholar 

  21. Ma, Y.-Z. et al. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J. Chem. Phys. 120, 3368–3373 (2004).

    Article  ADS  Google Scholar 

  22. Zeiger, H. J. et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992).

    Article  ADS  Google Scholar 

  23. Fantini, C. et al. Optical transition energies for carbon nanotubes from resonant raman spectroscopy: environment and temperature effects. Phys. Rev. Lett. 93, 147406 (2004).

    Article  ADS  Google Scholar 

  24. Papadakis, S. J. et al. Resonant oscillators with carbon-nanotube torsion spring. Phys. Rev. Lett. 93, 146101 (2004).

    Article  ADS  Google Scholar 

  25. Dumitrică, T., Garcia, M. E., Jeschke, H. O. & Yakobson, B. I. Selective cap opening in carbon nanotubes driven by laser-induced coherent phonons. Phys. Rev. Lett. 92, 117401 (2004).

    Article  ADS  Google Scholar 

  26. Vrakking, M. J. J., Villeneuve, D. M. & Stolow, A. Observation of fractional revivals of a molecular wave packet. Phys. Rev. A 54, R37–R40 (1996).

    Article  ADS  Google Scholar 

  27. Brar, V. W. et al. Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. Phys. Rev. B 66, 155418 (2002).

    Article  ADS  Google Scholar 

  28. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985).

    Article  Google Scholar 

  29. Della Negra, F., Meneghetti, M. & Menna, E. Microwave-assisted synthesis of a soluble single wall carbon nanotube derivative. Fuller. Nanotub. Carb. Nanostr. 11, 25–34 (2003).

    Article  ADS  Google Scholar 

  30. Menna, E., Della Negra, F., Dalla Fontana, M. & Meneghetti, M. Selectivity of chemical oxidation attack of single-wall carbon nanotubes in solution. Phys. Rev. B 68, 193412 (2003).

    Article  ADS  Google Scholar 

  31. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, New York, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank G. Marcolongo for technical help and Z. V. Vardeny for useful discussions. M.M., G.L. and E.M. acknowledge financial support from MIUR (contracts PRIN-2004035502, FIRB-RBNE 033KMA, FIRB-RBNE01P4JF). The research at LANL is supported by the Center for Integrated Nanotechnology (CINT), Los Alamos LDRD Funds and the Office of Basic Energy Sciences, US Department of Energy. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lanzani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambetta, A., Manzoni, C., Menna, E. et al. Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes. Nature Phys 2, 515–520 (2006). https://doi.org/10.1038/nphys345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing